Master Thesis

Computer Science

Thesis no: MCS-2004:20
August 2004

Multi-Agent Diplomacy

Tactical Planning using
Cooperative Distributed Problem Solving

Fredrik Haard

Department of Software Engineering and Computer Science
Blekinge Institute of Technology

Box 520

SE - 372 25

Ronneby Sweden

This thesis is submitted to the Department of Software Engineering and
Computer Science at Blekinge Institute of Technology in partial fulfillment
of the requirements for the degree of Master of Science in Computer Science.
The thesis is equivalent to 20 weeks of full time studies.

Contact Information:
Author: Fredrik Haard
E-mail: fredrik@haard.se

Advisor: Stefan Johansson
Department of Software Engineering and Computer Science
E-mail: stefan.johansson@bth.se

Department of Internet : www.bth.se/ipd
Software Engineering and Computer Phone : +46 457 38 50 00
Science Fax : + 46 457 271 25
Blekinge Institute of Technology

Box 520

SE - 372 25

Ronneby Sweden

Abstract

While there is a broad theoretic foundation for creating artificial intelligence
based solutions for two-player games, such as Chess, the multi-player domain
is not as well explored and artificial intelligence solutions for multi-player
games is often flawed. This report is an attempt to apply a multi-agent
approach to a multi-player game, and use distributed problem solving to
create viable plans in an environment of huge search spaces and multiple
adversaries. An automated player (bot) for the game Diplomacy was created
using distributed methodologies, and tested against other existing bots. The
tests show that the bot developed can outperform opposition in score while
being competetive in speed.

Keywords: Diplomacy, Al, Games, Agent, Multi-Player

Acknowledgements

I have had much help from several people while writing this report. First
and foremost, I would like to thank my supervisor Stefan Johansson, who
has given invaluable support, feedback and ideas during the work with this
report — he has helped me with everything from algorithms to LaTeX.

I would also like to thank the jDip team, especially Zach DelProposto for
the creation of and help with jDip, as well as Henrik Bylund whose DAIDE
library I have used. I am indebted to David Norman and Frangois McNeil
who have developed the bots I have tested against, and I wish to thank the
people in the DIPAI Yahoo group for a lot of help regarding DAIDE and
Diplomacy Al in general. A very special thanks goes to David Norman and
Andrew Rose - without DAIDE, HaAI would have remained a figment of my
imagination.

CONTENTS

1. Introduction 1
1.1 Problem description. 1
1.2 Method description 2
1.3 Software agents Lo 2
1.4 Outline. 2

2. Diplomacy and DAIDE 3
2.1 Seasons 4
2.2 Goal 5
2.3 Orders 5
2.4 Conflict 5
2.5 Previous approaches to Diplomacy AT 8

25.1 RandBot 9
2.5.2 DiploBot v1.2 9
253 Man’chio 9
26 DAIDE. 9

3. HaAl. 11

3.1 Multi-Agent Systems & Cooperative Distributed Problem Solv-
NG 11
3.2 HaAI Design and Architecture 11
3.2.1 ’HaAlEngine’ - The bot engine 12
3.2.2 ’"WorldModel’ - The world model 12
3.2.3 ’UnitAgent’ - The unit agents 12
3.2.4 ’GoalList’ - The goal list 12
3.2.5 Plan formation 13
326 Evaluation oL 19
3.2.7 Weights & Variants 22
3.3 Experiment setup oo 23
3.3.1 Participants Lo o 23
3.4 Experiment results oL 23

3.4.1 Scores 23

3.4.2 Elimination 0oL 24

3.4.3 Performance oL 24

4. DIsCuSsiOn e e 27
4.1 Parameters 27

4.2 Model 27
4.3 Strategy & Tacticso 28

5. Conclusion 29
6. Future work 30
6.1 Strategic analysis & Threat assessment 30
6.2 Tactical analysis. oL 30
6.3 Logistics 30
6.4 Extended negotiations & Plan optimization. 31
6.5 Parameter optimization. 31

1. INTRODUCTION

The creation of artificial intelligence (AI) players for two-player games is
a well known domain of computer science and mathematics. For games
with manageable search spaces, these methods include extensive searching
for possible moves, and weighting of found positions to find the best move
from the current position. Such methods can then be improved by using
heuristic methods, such as Alpha-Beta pruning [RN95]. However, this so-
lution is not applicable to all kind of games. Diplomacy presents several
problems when developing an Al. Firstly, there are huge search spaces -
the exact number of unique openings is 4,430,690,040,914,420 not counting
useless supports [Loe95]. This clearly makes extensive searching all but im-
possible. Secondly, it is a multi-player game, and this make evaluating a
position very hard, since the strongest position strategically and tactically
is not always the best position [LH92][Loe95]. These characteristics make
Diplomacy a very interesting game to study, since the uncertainty and un-
manageable search spaces is something that it has in common with the real
world, while the software environment and rules make it a viable domain for
experiments.

1.1 Problem description

This work intends to explore the possibility of using a multi-agent architec-
ture to create an automated Diplomacy player (bot), in an attempt to discern
wether a distributed solution can successfully compete with centralized so-
lutions in games with high complexity and huge search spaces. The domain
was chosen out of personal interest and since the nature of the game makes
it hard for classical approaches to handle.

1.2 Method description

The method for this study consist of the development of a Multi-Agent based
bot for Diplomacy, and evaluation of the performance of that bot compared
to existing bots, through the means of a Diplomacy tournament. A call for
participation was sent out to the Diplomacy Al community; including the
bot developed, four bots in six versions were entered into the tournament.

1.3 Software agents

Throughout this report, we will use the definition of an agent used by Russel
and Norvig - an agent is any entity that perceives and acts. The agents used
(Section 3.2.3) are utility-based and semi-autonomous - while they have own
goals and view of the board, they are bound by a rigid protocol and managed
by the game engine [RN95].

1.4 Outline

In the following chapter, Diplomacy will be described in detail and the Al
environment will be introduced. Included is also a brief description of some
previous approaches to Diplomacy AI. In Chapter 3, the bot developed as a
part of this report is described, and in Chapter 3.3 and 3.4 the experiment
setup and results are presented. Following the experiment presentation are
the discussion and conclusions drawn from the experiments.

2. DIPLOMACY AND DAIDE

Diplomacy! 2 is played on a map resembling Europe at 1901 (Figure 2.1).
Each player represents one of the Great Powers of Europe at the time -
Russia (white), Turkey (yellow), Italy (green), France (light blue), England
(purple-blue), Germany (grey-black) and Austria-Hungary (red)®. The map

! Diplomacy is (©Hasbro Inc.

2 Diplomacy as described here is the "No-press Standard” variant - it is played on the
original map, but without negotiations. More information on Diplomacy variants can be
found in [arc04] and [pou04]

3 The colors specified may vary - these are the colors the jDip user interface uses.

bar
nwg
stp
nao
fin
nwy | swe
®
nth .) -
bot
% = ® mos
hel o Ivn
A pru
L wal! 5
10}
”g' sil w@a)y @
mao <
=t bo gal ukr (a)
bur
swi o 75
gas oy
pie
© N"e bla
® ® .
'3
N spa lyo s " youl =) VK
L = ® arm
con,
wes tys
ion v smy @
O aeg syr
na
if o AN I

Fig. 2.1: The Diplomacy map at the beginning of the game, with province abbre-
viations.

is divided into provinces, and each province is connected to other provinces
through borders. A province can be either a land province or a sea province.
Additionally, there are coastal provinces, that is a land province that is ac-
cessible from a sea province. To further confuse things, there are also multi-
costal provinces. These are provinces that have multiple discrete coastal
areas. For example, Burgundy (bur), in the east of France, is a land province
without coast (landlocked). Brest (bre), in the north-western part of France
is a coastal province, and the English Channel (eng) is a sea province. St.
Petersburg (stp) is a multi-coastal province, having a north coast (nc) in Bar-
ents sea (bar) and a south (west) coast (sc) in the Gulf of Bothnia (bot). The
different types of provinces are defined in how they interact with units. There
are two kinds of units, fleets and armies, denoted 'F’ and "A’ respectively.
Armies can only traverse land provinces and only over land borders. Armies
are not affected in any way by coasts or multi-coastal provinces. Fleets on the
other hand may move only in sea and coastal provinces, and may never enter
a landlocked province. Furthermore, the multi-coastal provinces have more
than one discrete coast, and fleets moving to a multi-coastal province must
specify which (bordering) coast to enter. A fleet may not move directly from
one coast to another within a multi-coastal province. Some (land) provinces
are production centers - marked with a dot on the map. Each such produc-
tion center allows its owner to construct and maintain one unit - in other
words, the maximum number of units a power can control is the number of
production centers he controls.

2.1 Seasons

Turns in Diplomacy are measured in seasons, or phases. The seasons are
spring movement, summer retreats, fall movements, winter retreats and win-
ter adjustments (or winter builds). During each movement season, all powers
submit orders for their units. During retreats, units that have been dislodged
are retreated or disbanded, and during the adjustment phase supply center
ownership is decided and units are built or disbanded. When the game be-
gins, all players control three centers except Russia, which controls four, and
units on those control centers. These centers are considered the players home
provinces - shaded on the map in the color of the owner. The significance
of home centers is that it is only in the home centers that new units can
be constructed. In addition to these 22 centers, there are 12 uncontrolled
provinces at the beginning of the game. A power can take control of an
uncontrolled center or a center of another player by occupying it with a unit
during the winter adjustment phase. He then controls the center until an-

other player takes it over in a similar fashion. Seasons are abbreviated using
[season][year|[type] - the game begins in S1901M (Spring 1901 Movement).

2.2 Goal

The aim of the game is to dominate Europe by controlling at least 18 centers
- the first player to do so is the winner (by a solo victory). Since there are
positions that can result in a deadlock, the game can also be ended at a
predefined stage (such as winter adjustments 1950), or when all surviving
players agree on a draw. Games ended prematurely are always considered a
draw between all surviving players.

2.3 Orders

A unit can in a season only move to and interact with units in provinces
bordering the province they reside in. A fleet may not directly interact with
units in a landlocked province, and armies may not interact with fleets in a
sea province with the exception of convoys. Convoying is the act of moving
an army over sea by fleets. To do this, the army needs to be ordered to
move by convoy through several provinces (at least three: origin, convoy,
and destination). The convoy must move from a coastal province, through
one or more sea provinces, to a coastal province. In every sea province where
the convoy moves through, there must be a fleet ordered to carry through the
convoy. Any unit can also be ordered to hold - stand ground, or to support
the action of another unit. In any season, orders for all units are entered
secretly by each player and then revealed and carried out simultaneously.

2.4 Conflict

All units are of equal strength, and whenever two units try to enter the same
province, a standoff occurs (bounce) and the involved units do not move.
This also happens when a unit tries to enter a province where there already
is another unit (that is not moving away). Since no unit can win over another
by itself, support has to be added. A unit can give support into any province
it could move to. Support is given either to hold (defend) or move (attack).
Support is only valid if the supporting unit is not attacked itself - even if
that attack is unsuccessful. The act of attacking a supporting unit is known
as cutting support. If a supported unit moves to a province where there is
an unsupported unit, the attacked unit is dislodged. During the following
retreat phase, dislodged units must retreat to an unoccupied province other

than the one the attacker came from, or be disbanded. The general rule of
movements is that equal strength bounces, superior strength prevails. For a
more in-depth discussion of the rules and their implications, refer to the rule
book [Cal00] and/or ” The Game of Diplomacy” [ShaTs§].

Fig. 2.2: Opening moves for a game of Diplomacy. Arrows indicate movement
orders, the dashed arrow from the Austrian army in Budapest (bud)
indicates that it is supporting the movement of the army in Vienna (vie)
to Galicia (gal).

Fig. 2.3: The adjudicated results of the orders in Figure 2.2. Crossed arrows are
failed orders. Note the standoff in Burgundy — France used a self bounce

to protect the area without entering it.
stp

Fig. 2.4: The resulting position from Figure 2.2 and 2.3.

2.5 Previous approaches to Diplomacy Al

There have been several previous attempts to create an automated Diplomacy
player, and this section will describe a few of them that have been used during
the work with this thesis.

The Israeli Diplomat

One of the earliest, and best documented, attempts to create a Diplomacy
bot was the Israeli Diplomat. It was primarily concerned with the diplo-
matic aspect of the game, and was reportedly quite successful - it played
better than its human counterparts. The Israeli Diplomat uses an agent
based approach, and distributes tasks between agents that are ordered in a
hierarchical fashion [KL95]. Source and binaries for the Diplomat seem to
be lost.

The Bordeaux Diplomat

The Bordeaux Diplomat is based on an optimized best-first searching algo-
rithm, seeded with best-guess moves. It uses scripted ”book openings” to
increase performance, and an evaluation method that creates areas of vary-
ing importance that the bot should try to control. The strategic and tactical
planning seems to be done through searching with heavy pruning to offset
the huge search space [Loe95]. Like the Israeli Diplomat, source and binaries
for the Bordeaux Diplomat could not be located for use in this report.

DumbBot

DumbBot, while from the beginning not attempting to be a serious attempt
at an artificial intelligence (AlI) for Diplomacy, has proven very successful.
Originally written by David Norman to serve as an example for users of
Diplomacy Al Development Environment (DAIDE), it uses a rather simple
algorithm, that nonetheless has proven competitive and indeed beaten more
serious attempts at creating Diplomacy Al:s. DumbBot works by first calcu-
lating values for all provinces, and then creating orders based on those values.
When evaluating provinces, it takes into account supply centers, owner size
and proximity, as well as the attack strength it has on the province. Then
it tries to move units to the highest ranked province, with random chances
at moving towards lower ranked provinces with the chance declining propor-
tionally to the values computed. If the unit is already at the best place it
can reach, it holds, and if another unit is already occupying the province or
is moving there, it either supports the unit (if it is not already guaranteed

to succeed) or picks the second best move. Retreats, builds and disbands
are handled in much the same way - try to get units from low-ranked to
high-ranked provinces. [dai04]

2.5.1 RandBot

RandBot is a bot written by David Norman, and it simply creates a random
set of valid moves from the moves available to each unit.

2.5.2 DiploBot v1.2

DiploBot is developed by Francois McNeil. DiploBot’s tactical analysis is
based on setting weights on all provinces and then analyzing possible routes.
It first analyzes the threats around its own supply centers and units, and
adjust priorities before analyzing routes. It uses a stepped-iterative ap-
proach where a sequence of different modules modify the weights of each
province based on some criteria. Once every module is done, it passes the
resulting weighted map to the routes analyzer which returns a sorted list
of routes per unit. The sorting considers the value of the route, the ratio
of threats/supports, the priority flags set by the threats analysis mentioned
above. It then moves down the sorted list and tries to assign the best route for
each unit. For building, it selects the empty supply center that is the most
threatened and builds a unit based on the ratio of neighboring provinces
that are lands or seas. For removing, it simply removes the unit that is the
furthest away from the home provinces.

2.5.3 Man’chi

Man’Chi by Brian Roberts has the most complete strategic planning of the
bots available [man04]. Two versions are used in our experiments:

o AttackBot initially picks a random neighbor and attacks that player
until somebody else attacks it - then it targets the player that attacked
it. Pays little attention to defense.

e DefenseBot - like the AttackBot but with heavy emphasis on defensive
goals with only minor attacks against its target.

2.6 DAIDE

DAIDE - Diplomacy Al Development Environment - is an environment to al-
low automated Diplomacy players to compete against each other. It consists

of a communications model and protocol, and a language for bots to nego-
tiate and specify instructions. A server which bots can use to play against
each others is available (developed by David Norman) for bots using this
environment [dai04].

10

3. HAAI

HaAlI is the name selected for the attempt to create a multi-agent based
Diplomacy player. The bot was implemented by the author in Java and is
able to connect to the DAIDE server to play.

3.1 Multi-Agent Systems & Cooperative Distributed Problem
Solving

A multi-agent system is a system that uses several agents to complete some
task. According to Wooldridge [Wo002], multi-agent systems are suitable
under a number of circumstances. The main reason for using a multi-agent
approach for Diplomacy is very same as the first cited by Wooldridge - ”[the
environment is| highly dynamic, uncertain or complex”. The multi-agent
approach is also attractive since it allows for distribution of local tactical
analysis, simplifying the analysis process.

Cooperative distributed problem solving - CDPS - is the use of a multi-
agent system with semi-autonomous agents working together to solve a prob-
lem. The first task for any such system is the decomposition of the problem.
The second stage in the process is the sub-problem solving phase, and the
third and final stage is the answer synthesis, or the plan formation [Woo02].
There are several models for problem decomposition and plan formation,
with the Contract Net [Smi77] being the one that has had most impact on
the work with this thesis.

3.2 HaAl Design and Architecture

HaAl consists of a world model, a communications module, a number of
‘unit agents’ and an engine to run it all. The world model is based on
the jDip adjudicator and world model, an open source implementation of
Diplomacy [jdi04]. The world model also contains distance matrixes for fleets
and armies. The communications module uses Henrik Bylund’s Java DAIDE
library [byl04] to communicate with the DAIDE server. The game engine is
extremely simplistic - it receives updates from the communications library

11

and initiates the processing of the unit agent, and passes any resulting actions
back to the communications module.

3.2.1 ’HaAlEngine’ - The bot engine

The bot engine receives events from the communications module and initiates
the actions of the unit agents. It initiates the world model ("WorldModel’)
and keeps all unit agents in a list ("AgentList’). When actions from the unit
agents are required, the engine will collect a list of goals from the agents, and
then initiate plan formation. If no plan or an incomplete plan is produced
- i.e. at least one unit agent has no goal set - additional goals are collected
from the agents and a new plan formation round is initiated.

3.2.2 ’"WorldModel’ - The world model

The WorldModel uses the jDip world model, where provinces are divided
into one or more Locations, one for every coast. The world model contains of
all position data, together with distance matrixes for fleets and armies. The
world model is initialized as soon as the bot connects to the server and is told
what map is to be played. In the initial drafts, the world model contained a
static evaluation of every province based on map location, but this was later
removed in favor of an evaluation model where all evaluation was done by
the unit agents.

3.2.3 ’UnitAgent’ - The unit agents

The unit agents represent the own units currently in play. At the start
of the game, one unit agent is created for every starting unit by the bot
engine. Further unit agents are created when the bot can build additional
units, by letting a unit agent create itself at the best available location and
the best available type for a new unit. The unit agents have the ability to
evaluate their surroundings ('value(Province)’) and create goals using those
evaluations. They also have the ability to decide on a plan together if any
single agent is given a list of goals.

3.2.4 ’GoallList’ - The goal list

The goal list is a sorted list of goals ("Goal’), where each goal contains in-
formation about value, threats ("Threat’), and which unit agent it belongs
to. Fach goal also keeps track of UnitAgents that could offer support (’sup-
porters’), as well as how much support is needed for guaranteed success
("'wantedSupport’) and how much support is enough for it to be worth a try

12

(‘requiredSupport’). Supporters are sorted in order of the value they have
evaluated their own position to. When a unit agent is required to add goals,
it will add any (if any) goals previously added, as well as one new goal. As
soon as an agent commits to a goal, all its goals will be removed from the
list, and any agents supporting the goal will also remove their goals from the
list.

3.2.5 Plan formation

The model is loosely based on the Contract Net [Smi77], with modifications
to suit the domain. In the terminology of Smith, the task announcements
used are the Goals created by the UnitAgents, and the bids are the support
offers that are attached to those goals. In this way, every agent can (and
will) act as both a Contract Net manager and contractor. Broadcasting of
bids and task announcements was implemented as a version of token ring
to lower the amount of communication necessary. When plan formation is
initiated, the HaAlFEngine queries all UnitAgents for Goals (bid requests)
which are put into a sorted list in order of value (Fig. 3.8, 3.2). Then, the
UnitAgents are requested to add all support (bids) they can give to the Goals
in the list 3.3 - for each goal the supports are also sorted in order of cost®.
Then, the owner of the first (best) Goal examines it to see if there has been
enough support offered (as specified by requiredSupport). If enough support
is not available, the goal will be removed from the list (Fig. 3.10). If there
is enough support, the supporters that have offered the best support will be
notified to commit to this goal, and they as well as the owning UnitAgent
will purge all of their Goals from the list?(Fig. 3.11). If all Goals are removed
this way and there still are UnitAgents that has not committed to a Goal,
a new round will take place(Fig. 3.5). All UnitAgents not committed to a
Goal is then required to add any Goals previously added as well as one goal.
The Goals that are re-added, will have a random chance of lowering their
requiredSupport, based on the difference in value between the value of the
Goal and the value of the last added Goal by the same UnitAgent (Fig. 3.9,
3.5).

! The cost of a support is the best alternative goal of the offering UnitAgent.
2 Compare to the award message in the Contract Net - however, there are no tasks
completed, and no report messages sent.

13

START: Receives
request for goals

Add best Goal to
GoalList

Add all Goals
previously added
to list. Add one
additional Goal.

— |

Receives request

A

for Supports

H

Random: Lower
number of required
Supports for
previously added
Goals by one

Add all possible

Commit to support
Goal of another —

\ 4

own Supports to
GoallList

Request to add another Goal

Which request
is received?

Pass GoallList to
owner of best
Goal

*

No

Own Goal on
top of list?

Remove Goal
from list

Request to try a Goal;
own Goal on
top of GoalList

Supports

Request to commit
to offered Support

UnitAgent

y

Remove all own
Goals and
Supports from
GoalList; DONE

A

Commit to Goal

Y

required?

Yes

Enough Supports
available?

No

Yes ——» Request Supports

No

Fig. 3.1: The plan formation algorithm as seen from a single agent

14

APAR AMAR /_/FBR'E_\

GoalList
45: BUR 60: SPA 50: ENG Goals:
30: PIC 45: BUR 40: MAO 60: MAR-SPA
50: BRE-ENG
45: PAR-BUR

Fig. 3.2: Initial goal collection for France after evaluation is done. UnitAgents are
denoted as [type| [location]| - ”A PAR” is an army in Paris, "F BRE” is
a fleet in Brest. All UnitAgents add their best goal to the GoalList; only
two goals per UnitAgent is shown here. Goals are given as value:target -
the values used are for demonstration, and not reflecting the real values
used by HaAl

APAR AMAR F BRE GoallList

\

No supports S PAR - BUR No supports 60: MAR-SPA
50: BRE-ENG
45: PAR-BUR

Supports:
20: MAR S PAR - BUR

Fig. 3.3: Supports are added; only one support is possible, the army in MAR can
support the army in PAR to BUR.

GoalList
APAR AMAR F BRE
Goals:
60: MAR-SPA
3: Fail: PAR-BUR 1: Pick: A MAR-SPA 2: Fail: BRE-ENG 50: BRE-ENG
: 45: PAR-BUR

Supports:
MAR S PAR - BUR

Fig. 3.4: Goals are picked: First, the army in MAR picks the move to SAP. Both F
BRE and A PAR fail however, since there are threats to their moves (to
ENG and BUR, respectively) and no supports are available - the support
from the army in MAR was removed from the list when the goal was
picked.

15

APAR AMAR F BRE GoalList

45: BUR ; 50: ENG Goals:

30: PIC Alpady coed 40: MAO 50: BRE-ENG (-1)
45: PAR-BUR
40: BRE-MAO
30: PAR-PIC

Fig. 3.5: A new round of goal collection. A MAR will not add any goals (since it is
already committed). The move BRE-ENG has had its requiredSupport
lowered by one when BRE-MAO was added.

APAR F BRE /\ GoalList

Goals:

No supports SPAR-PIC 50: BRE-ENG {-1)
45: PAR-BUR

40: BRE-MAO

30: PAR-PIC

Supports:
BRE S PAR - PIC

Fig. 3.6: Supports are added to the list.

APAR F BRE Goallist

:Fail: Goals:
S AR 1: Pick: BRE-ENG 50: BRE-ENG (-1)
45: PAR-BUR
40: BRE-MAO
30: PAR-PIC

Fig. 3.7: Goals are picked; The fleet in BRE picks BRE-ENG (since its required-
Support has been lowered) and the army in PAR picks PAR-PIC (no
support required), after trying BUR (no support available)

16

HaAIEngine:makePlan()

{
Goallist goalList;
do
{
foreach(UnitAgent agent in agentList)
{
agent.addGoal(goallList);
X
foreach(UnitAgent agent in agentList)
{
agent.addSupports(goallist);
b
goallist.first () .owner() .plan(goallList);
}while(goallist.size() > 0)
submitOrders(getOrders(agentList));
}

Fig. 3.8: Plan creation

UnitAgent:calibrateList ()
{
Goal current;
lastValue = mLastAddedGoal.getValue();
foreach(Goal current in addedGoals)
{
if (random() >
(lastValue / current.getValue()) * (RETRY_FACTOR / 100))
{

current.requiredSupport--;

Fig. 3.9: Calibration of the GoalList to enable retries - called once every time
addGoal is called.

17

UnitAgent:plan(GoalList glList)
{
Goal goal = gList.first();
if (goal.owner() != this)
{
goal.owner () .plan(glList);
return;
}
if (goal.requiredSupport > number of possible supporters)
{
glist.removeFirst();
goal.owner() .plan(gList) ;
return;

//while we have not yet reached wantedSupport
//and there are more supporters available
while(goal.draftedSupport < goal.wantedSupport &&
goal .supporters() .size() > 0)
{
//Tell this UnitAgent to commit to this goal
goal .bestSupporter() .commit (goal, glList);
this.commit(goal, gList);

glist.removeFirst();
goal.owner () .plan(gList);

Fig. 3.10: The UnitAgent planning algorithm.

UnitAgent:commit(Goal goal, GoallList gList)

{
this.order = goal.getOrder(this); //Set own order
glist.purge(this); //remove all own goals and supports from list

Fig. 3.11: Committing to a goal.

18

Builds

Builds are handled by the unit agent to be built. First, it will decide wether
an army or fleet is most needed; it will always try to make the army/fleet
ratio match the ratio of non-home centers reachable by an army /fleet. Then,
it will build that kind of unit at the best available home center for that kind
of unit. If attempting to build a fleet, and no fleet builds are possible, it will
try to build an army instead.

Disbands

When disbanding, the unit at the position with the lowest value will always
be disbanded.

Retreats

Retreats are decided by allowing any retreating units to pick their ’best’
retreat, conflicts are handled based on second best retreat available.

3.2.6 FEvaluation

When evaluating a province, only those provinces with a supply center have
their "own” value. That value is based on whether the bot is owner of the
center or not, as well as what season it is. No value is given to owned centers
that are unthreatened (Table 3.1 and Figures 3.12 and 3.13). The value
of provinces is also increased with a fraction (RANGE_DECLINE) of their
neighbors value. In addition to this, to avoid ”chains” of several moves that
depend on each other, which generally is a bad thing in Diplomacy, the value
for unthreatened province occupied by a friendly unit is decreased (using
O_Occ_THREAT and O_OCC_UNTHREAT). An example of such a chain
is in Figure 2.3, where the army in Moscow bounces on the friendly fleet in
Sevastopol, since that fleet bounces with the Turkish fleet in the Black Sea. A
better move might have been Moscow-Ukraine, since that move is guaranteed
to succeed. Note that a province is evaluated as separate Locations - each
possible fleet or army position is a Location. Thus, Brest has two Locations
(coast and land) and Spain has three (nc, sc, and land) while the Baltic Sea
has one (sea) just as Burgundy (land).

19

UnitAgent:evaluate(Location pLoc)

{

value = value(pLoc);

EVAL_SCOPE; i++)

for (int i = 1; i <
{

foreach(Location at distance i)

{
if (pLoc not visited)

{

value += value(location) *
Math.pow(RANGE_DECLINE / 100, 1i);

if (pLoc has friendly unthreatened unit)
value *= OWN_OCCUPIED_UNTHREATENED / 100;

return value;

Fig. 3.12: The evaluation algorithm.

20

UnitAgent:value(Location pLoc)
{

if (pLoc is not a supply center) return O;
value = 0;

if (pLoc is own supply center)
{
if (pLoc is threatened)
{
if(This is a fall turn)
value += OWN_CENTER_THREATENED_FALL;
else
value += OWN_CENTER_THREATENED_SPRING;
}
if (pLoc is home center) value += OWN_HOME_CENTER;
}
else

{
if (This is a fall turn)
value += ENEMY_CENTER_FALL);
else
value += ENEMY_CENTER_SPRING;

if (pLoc is home center) value += ENEMY_HOME_CENTER;
}

return value;

Fig. 3.13: The algorithm evaluating a single location.

21

3.2.7 Weights & Variants

HaAl was created in two different variants, with slightly different character-
istics, listed in Table 3.1.

Parameter Explanation Van. | Ber.

EVAL_SCOPE How far the agent should | 8 12
look in its evaluation.

RANGE_DECLINE How many percent of the | 12 10
value of a province that
should transfer to neighbor-
ing provinces.

E_C_FALL The value of an enemy cen- | 1000 | 1200
ter in the fall.

E_C_SPRING The value of an enemy cen- | 800 | 1000
ter in the spring.

O_C_THREAT_FALL The wvalue of an owned, | 1000 | 900
threatened center in the fall.

O_C_THREAT_SPRING The value of an owned, | 800 | 800
threatened center in the
spring.

O_H_CENTER Extra value given to own | 1000 | 1200
threatened home centers.

E_H_CENTER Extra value given to an en- | 500 | 1000
emy home center.

RETRY_FACTOR Retry tweak factor. 1.05 | 0.90
0_OCC_UNTHREAT Chain avoidance factor. | 0.60 | 0.30
(Unthreated units)

O_-OCC_THREAT Chain avoidance factor. | 0.70 | 0.50
(Threatened units)

The basic weighting, this bot made little difference between offense and de-

fense.

Tab. 3.1: HaAl parameters and values.

Vanilla

22

Berserk

The Berserk bot prioritize centers owned by enemies, and especially their
home centers. It is more likely to try a move with low chances of success
than the vanilla version.

3.3 Experiment setup

The experiments were conducted as a series of games where all seven par-
ticipating bots were assigned their starting player uniformly distributed at
random. Each game was played until there were

1. a solo victory,

2. no change in supply center ownership had taken place for five consec-
utive game years, or

3. three minutes had passed.

592 games were played on a single AMD 1700xp 768 DDR running Windows
XPpro. The scores awarded were (7/(number of survivors)) points for a
draw, and 7 points for a solo victory. Less than 2% of the games were
aborted because of the time limit.

3.3.1 Participants

Both of the two described variants of HaAI were entered into the tournament,
as well as Man’chi AttackBot 7, Man’chi DefenceBot 7, RandBot, DiploBot
v1.2 and DumbBot v2.

3.4 Experiment results

In this section the results of the tournament will be presented, regarding the
scores of the bots, their ability to survive an elimination and their speed.

3.4.1 Scores

There are two ways of scoring in Diplomacy, as discussed in Section 3.3: to
win games (i.e. to solo), or to still be in the game when it ends prematurely
(i.e. be part of a draw). In Tables 3.2-3.3 we see the individual sums of
scores of the bots of the 592 matches that were run (of which 487 were solos,
the rest of them ended in draws). The total score is shown in Table 3.4.

23

Clearly, HaAl Berserk performs well, winning 18.4 percents of the games,
although DiploBot, DumbBot, HaAl Vanilla and Man’chi AttackBot all are
between 12.7 and 16 percent (see Table 3.2). Although Man’chi DefenceBot
was only able to win 40 matches, it was best on the draws, closely followed
by HaAl Vanilla. DumbBot was by far the bot that was least able to survive
to a draw, reaching barely over the level of RandBot as shown in Table 3.3.

In total, HaAl Berserk performed best with DiploBot and HaAI Vanilla
on second and third place. As expected, random movements (represented
by RandBot in our tournament) is not a successful strategy in this game
(either).

3.4.2 FElimination

Another aspect of Diplomacy is the ability to survive. Even though a solo
implies that it is just a matter of time before the soloing player will be able
to conquer the rest of the provinces, it may still be of interest to see what
bots are able to survive an elimination. In Table 3.5 we see that the very
same bots that are among the best in reaching draws (the Man’chis and the
HaAls), also survive elimination to a higher degree than e.g. DumbBot.

3.4.3 Performance

Each bot was set to play against itself for ten minutes of effective game
time, and the total number of orders submitted per second for the seven
participating bots was recorded. In Table 3.6 we can see that the DumbBot
was by far the fastest bot, leaving HaAl and Man’chi far behind. Slowest of
them all was DiploBot, only managing 3.7 orders per second, about 15 times
as slow as DumbBot.

Bot Matches Percent Solo score
won

HaAlI 0.63 Berserk 109 18.4 763
DiploBot 2 95 16.0 665
DumbBot 2 87 14.7 609

HaAI 0.63 Vanilla 81 13.7 567
Man’chi AttackBot 7 | 75 12.7 525
Man’chi DefenceBot 7 | 40 6.8 280
RandBot 0 0 0

Tab. 3.2: Solo score totals.

24

Bot name Draw Score
Man’chi DefenceBot 7 164.27
HaAI 0.63 Vanilla 157.64
Man’chi AttackBot 7 133.32
HaAlI 0.63 Berserk 103.05
DiploBot 2 98.10
DumbBot 2 42.34
RandBot 36.29

Tab. 3.3: Draw score totals

Bot name Total Score Score per match
HaAlI 0.63 Berserk 866.05 1.46
DiploBot 2 763.10 1.29
HaAI 0.63 Vanilla 724.64 1.22
Man’chi AttackBot 7 658.32 1.11
DumbBot 2 651.34 1.10
Man’chi DefenceBot 7 444.27 0.75
RandBot 36.29 0.06
Tab. 3.4: The total and average scores for the participating bots in the 592 played
games.
Bot Matches elimi- | Percent elimi-
nated nated

HaAI 0.63 Vanilla 59 10.0

Man’chi DefenceBot 7 | 76 12.8

HaAlI 0.63 Berserk 87 14.7

Man’chi AttackBot 7 | 115 194

DiploBot v1.2 116 19.6

DumbBot 2 348 58.8

Davids RandBot 1 530 89.5

Tab. 3.5: Elimination records

25

Bot type Orders/s | Implementation Language
DumbBot 2 55.9 C++
HaAT 0.63 19.6 Java
Man’chi 7 12.7 Java
DiploBot 1.2 3.7 Java

Tab. 3.6: Bot performance measured in number of orders per second.

26

4. DISCUSSION

There is at least one possible source of errors in the results; the fact that
games were aborted with no score recorded if a game dragged on for more
than three minutes. While this did not happen very often, it might have
rendered worse results for DiploBot, which becomes quite slow once it gets
many units on the board. However, these errors are marginal since approxi-
mately 3% of the games were aborted, and most of these were server crashes
at launch (in the seeding round, out of 33 games without a result logged, 32
was because of a server crash).

4.1 Parameters

The parameters used were the results of the study of other bots, the authors
experience in Diplomacy, and very limited testing. It is therefore likely that
these values are not optimal - in fact, it is probable that these are not even
the most optimal parameters to use at all.

4.2 Model

The decision model used works well, within certain limits imposed by the
design and implementation. It is efficient and coordinated [BG88| in plan
formation for units at the front, and can easily be tweaked to create differ-
ent characteristics. However, optimization of the algorithm and addition of
new factors often required rewriting not only in the unit agents, but also in
associated data types.

Another issue with the distribution of plan formation was the fact that
evaluation of decisions made debugging hard because of the sheer amount
of entities, data and actions involved. While this does not directly impair
the bot itself, it made the development progress slower than might otherwise
have been the case. This problem with traceability is to no small extent a
design flaw, which may be mitigated by a design that takes this into account.

27

The unit agent model seems to be an efficient way of distributing the analy-
sis and plan formation for Diplomacy, and the token ring communication
limited overhead to a great extent compared to broadcast/direct communi-
cation designs also contemplated. The evaluation scheme worked reasonably
well, but it is possible that a ’cleaner’ solution where only the strengths of
a position are included in the basic evaluation would have been more appro-
priate. This would require specific logics to handle logistics behind the front
line.

4.3 Strategy & Tactics

Since HaAI does not plan ahead, and makes no strategic evaluations, it is all
the more dependent on effective tactics. The algorithm used is developed to
maximize the immediate utility, rather than setting up for future gains. In
the domain of Diplomacy, this might not be a drawback, since the uncertain-
ity of any plan dependent on the actions of several independant actors makes
it hard to compute expected utility with any degree of precision. Still, while
detailed planning might not be possible or even desireable, overall perfor-
mance could probably be increased by paying attention to strategic aspects
of the game.

28

5. CONCLUSION

The distributed approach used by HaAl was shown successful, even if it did
not outperform the opposition by any large margin. Even though the bot
itself is still quite simple compared to Man’Chi or Diplobot, it delivered
better results and performance. While lacking the ability to plan ahead, the
distributed algorithm manages to coordinate units and create a coherent plan
for the immediate future. The agent approach, with rather simple agents and
a straightforward protocol for the agents to coordinate their movements, keep
the design of the individual parts simple and allows the complex problems of
Diplomacy tactics to be divided into manageable parts.

29

6. FUTURE WORK

There are a number of areas where HaAl and the multi-agent approach to
Diplomacy can be improved.

6.1 Strategic analysis & Threat assessment

One area where HaAl could be improved a lot, is to add strategic analysis
and threat assessment. A few relatively simple ways to do this would be to
analyze which centers are most likely to be part of a solo to determine targets,
and use the related notion of Fear Factor [Win99][Tuf00] to spot potential
threats. Another aspect of strategic analysis is the fact that powers may be
more or less good targets, or important to attack. It is quite obvious that
it is important to attack a power that has taken a large number of centers,
and thus is close to winning the game. Furthermore, it might be of a greater
value to take the last center of a power, and thus eliminate it, than it is to
take the fourth or fifth center of another power.

6.2 'Tactical analysis

The tactical analysis in HaAl does not try to analyze the enemy position
and probable moves; instead it treats threats and enemy units in an abstract
way. If one could with any certainty determine the most likely enemy targets,
optimization of the tactical analysis would no doubt be possible.

6.3 Logistics

It seems that the problems facing units far behind the line is quite dissimilar
to the once at the front. Handling of logistics seems to be an important part,
and should probably not be left to the generic tactical analysis algorithm,
but rather have an algorithm of its own to optimize performance.

30

6.4 Extended negotiations & Plan optimization

The agent and negotiation model needs to be extended to accommodate these
changes, and ideally to be able to add new aspects, such as a negotiation
module. Also, with the current implementation the optimization of plans
is quite crude, especially with regards to selecting support - this could be
amended either in a new negotiation model or within the current model.

6.5 Parameter optimization

Since the parameters used for the HaAl versions are the results of very limited
testing, there is probably much room for improvement here. For example,
genetic algorithms could be used to find good bot parameters within the
framework.

31

[arc04]

[BGSS)

[byl04]
[Cal00]

[dai04]

[Fra03]

[Gol89]

[1di04]

[KL95]

[LHO2]

[Loe95]

[man04]

[Now96]

BIBLIOGRAPHY

The diplomacy archive, http://www.diplomacy-archive.com, 06
2004.

Alan H. Bond and Les Gasser. Readings in Distributed Artificial
Intelligence. Morgan Kaufmann, August 1988.

Jac page, http://www.ludd.ltu.se/ heb/dip/, 06 2004.

Alan B. Calhamar. The rules of Diplomacy. The Avalon Hill Game
Company, 4th edition, 2000.

Daide web page, http://www.starblood.org/daide/, 06 2004.

Henric Fransson. Agentchess - an agent chess approach. Master’s
thesis, Blekinge Institute of Technology, 2003.

D. E. Goldberg. Genetic Algorithms in Serach, Optimization, and
Machine Learning. Addison-Wesley, 1989.

jdip web page, http://jdip.sourceforge.net, 06 2004.

Sarit Kraus and Daniel Lehmann. Designing and building a negoti-
ating automated agent. Computational Intelligence, 11(1):132-171,
1995.

Daniel E. Loeb and Michael R. Hall. Thoughts on programming a
diplomat. Heuristic Programming in Artificial Intelligence, 3: The
Third Computer Olympiad:123-45, 1992.

Daniel E. Loeb. Challenges in multi-player gaming by computers.
The Diplomatic Pouch Zine, S1995M, 1995.

Man’chi web page, http://ca.geocities.com/bmr335/manchi.html,
06 2004.

Richard J. Nowakowski, editor. Games of No Chance, pages 451—
471. Cambridge University Press, 1996.

[pou04] The diplomatic pouch, http://www.diplom.org, 06 2004.

[Rab02] Steve Rabin, editor. AI Game-Programming Wisdom. Charles River
Media, 2002.

[RNO5] Stuart Russel and Peter Norvig. Artificial Intelligence. Prentice
Hall Inc, 1995.

[Sha78] Richard Sharp. The Game of Diplomacy. 1978.

[Smi77] R. G. Smith. The contract net: A formalism for the control of
distributed problem solving. 1977.

[Tuf00] Ole R Tuft. Geographical destiny revisited. The Diplomatic Pouch
Zine, W2000A, 2000.

[Win99] Paul D. Windsor. Geography is destiny. The Diplomatic Pouch
Zine, F1999R, 1999.

[Wo002] Michael J. Wooldridge. An Introduction to MultiAgent Systems.
John Wiley and Sons Ltd., 2002.

