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Chapter 1

Introduction

1.1 Problem addressed: general

This thesis takes place in the general context of rescue robotics. In par-
ticular, it belongs to a larger project aimed at allowing Örebro University
(Sweden) to join the future RoboCup Rescue competitions, see [37]. In this
kind of competitions, the main goal is searching for simulated victims in
unstructured environments that resemble disaster sites and are off-limits to
human staff, see Fig. 1.2. The project concerns the development of a mixed
rescue team composed of:

• a wheeled mothership robot;

• some Sony’s AIBOs robots, referred as scouts (see Fig. 1.1);

• a human operator.

The motivation behind this configuration is that a heterogeneous team of a
large robot, the mothership, and several smaller robots, the AIBOs, comple-
ment each other’s strengths. In fact, a larger robot can carry more capable
sensors, provide substantial computation, and, being wheeled, it is faster
than the legged scouts. However, because of its size it is not able to travel
everywhere in the environment. This is the case for the challenging environ-
ments one expects to find in the aftermath of a disaster, with fallen debris,
collapsed walls, and cluttered floors. Smaller robots, while having less sens-
ing, compensate by their ability to go in small and inaccessible places, small
crevices etc.

In literature there is a work, [5], employing a mixed team with the same
composition as above, but there are relevant differences concerning:

• Operator interface. One of the objectives of the general project to
which thesis belong, is to provide the operator with an “intelligent”
interface. This should contain, among other information like images

1
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Figure 1.1: Sony’s AIBO ERS-210

shot by the mothership, a series of windows showing, at the same
time, stream of images related to what each AIBO is looking through
its camera. These streams are supposed to be a sort of “background”
processes that attract the attention of the operator, e.g., by high-
lighting a particular window, whenever a victim is recognized. Victim
recognition is accomplished by image processing techniques that allow,
for instance, to identify skin color, body motion, and other features
related to possible victims in a rescue environment. In order to bet-
ter evaluate the presence of victims, the operator can also examine a
panoramic image obtained from different single images taken by a cer-
tain AIBO’s camera. This permits to achieve a wider field of view than
a simple image. In fact, an AIBO’s picture presents a very low reso-
lution and field of view, and it would be quite inadequate for victim
localization purposes.

[5] only allows to consider one AIBO’s simple image stream at the
time, without any automatic victim identification.

• Autonomy degree of AIBOs. In [5], AIBO are simply tele-operated,
whereas we deal with semi-autonomous (also called tele-autonomous)
robots.

• Overall coordination and supervision. In [5], cooperation among robots
is missing, whereas supervision is only provided by the operator. In
our project robots are supposed to cooperate through a distributed
architecture that allows them to cope with fundamental tasks like self-
localization.
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Figure 1.2: Rescue Robot League Arenas

1.2 Subproblem addressed: in this thesis

This thesis deals with semi-autonomous navigation of a single AIBO robot,
moving on a flat floor with several obstacles. Semi-autonomous refers to the
robot degree of autonomy. This means that the robot should implement
cognitive functionalities that allow it to follow the general directions pre-
scribed by the operator, by taking care of the low-level details like attitude
control and obstacle avoidance. Moreover, the robot should provide pre-
interpreted sensor data carrying rich information about the environment,
thus simplifying the operator tasks of perceptual interpretation and situ-
ation assessment. In this way, the operator can focus on giving abstract
commands to the robot, e.g., by clicking on a position in the environmental
map where the robot should navigate.

The main mean through which our AIBO acquires information from
the surrounding environment, is the monocular vision, accomplished by a
camera placed in its head. Unfortunately, this camera provides poor images
since resolution and field of view are very limited, thus restraining the robot
perception of the environment. This is an important issue to be faced in
order to cope with semi-autonomous navigation of an AIBO.

Another relevant topic concerns the own odometry information the robot
exploits for self-localization purposes. In fact, AIBO, being a legged robot,
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does not provide a direct measure of its body displacement, as it happens,
for instance, in the case of dead reckoning for wheeled robots. Moreover,
computing the robot location starting from the measures provided by each
of AIBO’s twelve leg joint angle sensors, would be a very hard task since it
would presuppose a precise knowledge about robot kinematics and dynam-
ics. In addition, AIBO’s sensors are not that accurate. Thus, achieving an
effective method for AIBO self-localization is a challenging subject.

1.3 Outline of the approach

We frequently employ, throughout the thesis, the key concept of mosaic
image. In fact, this is the principal input of all the vision-based tasks we
implemented in our system. A mosaic image is a set of several simple images
quickly taken by the AIBO’s camera with the robot body standing still in a
particular location of the environment. These images are shot from different
pan/tilt orientations of the robot head so as to acquire a wider environment
view than a simple image can permit.

The vision-based tasks using mosaic images constitute the solutions we
propose to address the previous mentioned subproblem. In particular, we
developed:

• An interface that allows the operator to access what the robot is
“looking” at present, through a panoramic image obtained from the
currently taken mosaic image.

• A navigation system based on an internal representation of the en-
vironment that, in our case, is a fuzzy occupancy grid. This map
is constructed starting from obstacle range estimations that are ob-
tained either applying an extended version of “visual sonar” algorithm
(Cf. [16]) that makes use of mosaic images, or employing an obstacle
detection algorithm designed by us. Whenever the operator indicates
a goal environment location for the robot, a fuzzy path planner is in-
voked in order to find an efficient obstacle-free route. This planner
exploits the well known A* algorithm. Actual execution of the path
relies on a way-point technique and, at a lower level, on a proportional
controller.

• A self-localization method based on the integration between a simple
open-loop odometry already employed in [15], and a relative pose es-
timation obtained starting from different mosaic images. The latter
method uses triangulation and landmark measurements.

1.4 Main contributions

The main original contributions of this thesis are:



1.5. OUTLINE OF THIS THESIS 5

1. the overall framework ;

2. visual sonar algorithm extended to mosaic images;

3. a new method for obstacle range estimation using mosaic images;

4. a new method for relative pose estimation based on mosaic images.

Regarding the first contribution, we developed a stand-alone system for
the wideranging task of semi-autonomous navigation of a robot in unknown
environments.

Concerning the second contribution, this is the extension of an existing
method for vision-based obstacle range estimation [16] to deal with mosaic
images and unknown floor color.

The third contribution is an algorithm for obstacle range estimation
which is alternative to the previous one.

The last contribution is a triangulation-based method to infer the robot
ego-motion starting from corresponding features belonging to different mo-
saic images.

1.5 Outline of this thesis

The thesis is structured as follows:

Chapter 2 surveys different approaches suggested in literature to solve the
problem addressed in this thesis.

Chapter 3 summarizes the principal components of our implemented sys-
tem and the way they communicate. This chapter also provides some
details about the construction of panoramic images.

Chapter 4 presents the “visual obstacle range finder” of our system. In
particular, we discuss about the segmentation stage, the building of
the calibration matrix, and the two methods employed for estimating
obstacle positions.

Chapter 5 deals with the actual robot navigation in the environment. We
describe the building of the fuzzy occupancy grid, the path planner,
and the path execution stage.

Chapter 6 details the robot self-localization process, focusing on the ex-
ploitation of mosaic images. We first discuss a method for estimating
the robot ego-motion starting from corresponding features belonging
to two different mosaic images. Then, we present two implemented so-
lutions for feature selection and matching within mosaic images: the
first one is operator-based, whereas the second one is automatic.
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Chapter 7 is devoted to the experimental verification of the calibration
matrix we have obtained, the two methods for obstacle detection, and
the visual self-localization technique. At the end, we also present a
qualitative experiment concerning the whole navigation system.

Chapter 8 summarizes the principal achievements of this work, points out
the most serious limitations, and suggests a few directions for future
work.



Chapter 2

Related work

Related work can be characterized along four relevant dimensions: search
and rescue robotics, visual sensors for monocular range estimation, collision-
free navigation in unknown environments, and visual self-localization em-
ploying monocular sensor.

2.1 Search and rescue robotics

2.1.1 Overview

Robot platforms could potentially be used for a variety of tasks in search
and rescue operations, including: delivery of food and medicals to buried
survivors, rubble removal, victim transportation, and inspection of voids in
the rubble pile. Until today, most robotic platforms have been used for the
last task, exploring voids which are not accessible to humans because of their
size or because of the extreme danger. [26] reports the result of a survey
study about robotic platforms to be used in rescue and emergency response
operations.

The first and most famous search and rescue operation to date has been
the use of several robots to explore the rubble pile at ground zero at the
World Trade Center after the September 11 event. The operation was carried
out by the Center for Robot Assisted Search and Rescue (CRASAR) at the
University of South Florida, FL, USA, under the direction of Prof. Robin
Murphy (see http://crasar.csee.usf.edu).

According to [26], the critical aspect that distinguishes different robot
platforms to be used for search and rescue operations is their size, since this
determines the type of void that can be explored. The following classifica-
tion has been proposed by Prof. Murphy:

7
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Robot size Type of void to explore

Man packable (micro) sub-human (pipes, ventilation holes)
Man packable (mini) confined space (void in muck pile)
Man portable semi-structured (partially collapsed building)

Concerning the forms of locomotion for rescue platforms, there are six
main categories: wheeled, tracked, legged, airborne, serpentine, and hybrid
configurations. The large majority of existing platforms uses wheeled or
tracked locomotion, including almost all of the commercially available plat-
forms. The other kinds of locomotion are usually only employed in research
laboratories. It should be noted that legged locomotion, to which Sony’s
AIBOs belong, is potentially the most versatile form of locomotion, e.g., it
allows to negotiate steps and stairs, but it is slower, more fragile, and much
harder to control than wheeled and tracked systems.

2.1.2 Modes of operation

Robotic platforms for rescue operations differ in the balance between need
for tight operator control and ability of the platform to perform autonomously.
The robot can operate under different “degrees of autonomy”, ranging from
pure tele-operation by part of the operator to full autonomous operation by
part of the robot. [26] considers the following modes of operation:

• Tele-operation: the operator has full control. The robot can be seen
only as a set of physical actuators and sensors;

• Tele-autonomy : the operator gives abstract-level commands and has
access to pre-interpreted sensor data. This means the robot imple-
ments sensori-motor processes for sensing and perception, and for mo-
tion control.

• Shared autonomy : the robot and the operator are seen as on-pair
partners in performing a joint task. In fact, both have world modeling,
planning and deliberation, sensing and perception, and motion control
capabilities.

• Full autonomy : the robot performs the task entirely by its own, with-
out any human assistance.

Our navigation system can take place somewhere in between the ex-
tremes of the above classification. In particular, it belongs to the tele-
autonomy class. In fact, our AIBO is able to autonomously reach envi-
ronment locations indicated by the operator on the base of abstract and
rich information about the environment, e.g., a map, provided by the robot
itself. This kind of information simplifies the operator tasks of perceptual
interpretation and situation assessment, thus releasing he/she from low-level
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navigation concerns, like obstacle avoidance, and allowing he/she to concen-
trate more on higher-level cognitive processes like the general exploration
strategy of the environment.

A recent example of tele-autonomy is [12]. In this work various types
of rescue robots, including multi-legged robots, are easily operated by the
same interface, which is handled by a non-professional operator, i.e., with-
out any prior training. This can be accomplished because the interface is
the same as that of usual vehicles, e.g., cars, thus allowing the operator to
operate the robots by employing the experience of daily life. The operator
is provided with pre-interpreted sensor data which results, for instance, in
force feedback, short informative texts, figures, and sounds. Abstract com-
mands generated by the operator are then “converted”, within each robot,
in suitable control signals through a “semi-autonomous controller”.

2.1.3 RoboCup Rescue

Overview

RoboCup Rescue and the related Urban Search and Rescue (USAR) Robot
Competitions (see [36]) are among the most important academical activi-
ties in the research field of search and rescue robotics. The goal of USAR
robot competitions is to increase awareness of the challenges involved in
search and rescue applications, provide objective evaluation of robotic im-
plementations in representative environments, and promote collaboration
between researchers. It requires robots to demonstrate their capabilities in
mobility, sensory perception, planning, mapping, and practical operator in-
terfaces, while searching for simulated victims in unstructured environments,
which are off-limits to human operators. As robot teams begin demonstrat-
ing repeated successes against the obstacles posed in the test-arenas, the
level of difficulty will be increased accordingly so that the arenas provide a
stepping-stone from the laboratory to the real world. Meanwhile, the yearly
competitions will provide direct comparison of robotic approaches, objective
performance evaluation, and a public proving ground for field-able robotic
systems that will ultimately be used to save lives.

Examples

In the following, we briefly present the projects that were placed respectively
in the first three positions at the last “RoboCupRescue - World Champi-
onship” (Lisbon, Portugal, 2004).

[13] describes a tracked robot with six crawlers whose configuration is
variable depending on the terrain structure, thus allowing the robot to oper-
ate in a wide variety of situations. The robot is also endowed with a sensor
head carried on a 5 D.O.F. manipulator. The sensor head provide binocular
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vision and a set of rich specific sensors for victim identification, e.g., micro-
phones and thermometers. The robot is tele-operated by two operators via
two joysticks, one for the crawlers and one for the head manipulator. The
operators evaluate, respectively, the images received from two cameras at-
tached to the crawler structure, and from the head binocular camera. A 3D
map building through laser scanner, is also performed for robot localization
purposes and for allowing human rescue staff to find a route to the identified
victims.

[33] makes use of a wheeled robot equipped with a laser scanner, two
cameras and a microphone. All these sensor data are presented to the oper-
ator (the laser scanner allows a 3D-scene reconstruction) that tele-operates
the robot via joystick. The operator is also capable to mark the location of
victims, which he perceives on the screen, within the image.

[4] provides a full-autonomous robotic platform for victim identification.
This is achieved through a strong interaction between visual cognitive in-
ference (camera is the main sensor employed for victim recognition) and ac-
tions executed. Mapping, vision and navigation are all collaborative agents
that work together sharing data to accomplish to complex identification and
mapping tasks. The visual process reacts to interesting features in the arena
trying to approach the focused area in order to achieve more successful ob-
servations from the environment. A reactive planner subsystem includes all
the functionalities which are needed for accomplishing the role of coordinat-
ing and controlling the tasks mentioned above. The hardware architecture
is constructed over a wheeled robot, endowed with 8 sonars and inertial
sensors.

Finally, we discuss a work involving AIBOs.

Georgia Institute of Technology joined the USAR competition with a
marsupial team consisting of a larger wheeled robot and several small legged
AIBO robots, carried around by the larger robot (see [5]). The choice of an
heterogeneous team was motivated, as in the case of our general problem
(see Sec. 1.1), by the observation that a large robot and several smaller
robots compliment each other’s strengths.

AIBOs are tele-operated since an operator sends to each of them basic
commands like “go left”, “go forward”, etc., on the base of environment
images provided by the dogs. In this way, the human operator is in charge
of: the perceptual interpretation of sensor data, the formation of plans and
decisions as to the next actions to be performed by the robot. For these
reasons, tele-operating a robot is a tough task, complicated by the limited
view from the video camera. In fact, the human operator can incur loss of
situational awareness, poor depth judgment, and failure to detect obstacles.
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2.2 Visual sensors for monocular range estimation

In literature, there exists, among the others, two importants approaches for
monocular range estimation of objects belonging to the environment: visual
looming [23] and visual sonar [16].

Visual looming The looming algorithm is based on the simple fact that
objects appear larger to a camera as they get closer, and smaller as they
move away. Suppose a mobile robot endowed with a camera is located
at distance d0 from a stationary object; then the robot moves toward the
object, reaching a distance d1 from it. [23] shows that d0 and d1 can be
calculated from ∆d = d1 − d0, the robot displacement, and from p0 and p1,
the size of the image projection of the same object at distances d0 and d1,
respectively. This is referred as looming equation.

Note that it is irrelevant whether the displacement is the result of camera
movements or object movement, and whether the motion is toward or away
from the object. The looming equation can be shown to hold under such
conditions that are reasonable for mobile robots, but, in order to find dis-
tances, a measure of the displacement is needed, e.g., through proprioceptive
odometry.

Unfortunately, AIBO, being a legged robot, does not provide a direct
measure of its body displacement, and computing the body displacement
starting from each of its 12 leg joint angle sensors, would be a very hard
task since it would presuppose a precise knowledge about dog kinematics
and dynamics. Moreover, AIBO’s joint sensors are not that accurate.

Visual sonar This vision algorithm behaves similarly to a sonar sensor.
The vision processing consists of several discrete stages. The first stage
takes the raw camera image ([16] employs Sony’s AIBOs) and classifies, i.e.,
segments, each pixel into one of several color classes. Pixels corresponding
to the floor are classified into the “floor” class. Pixels of other colors are
classified into either one of the color classes for various a priori-known objects
or into the unknown class for general obstacles. Scan lines are drawn in the
segmented image that correspond to lines on the ground plane emanating
from the reference point for the robot. [16] used scan lines spaced every
5 degrees around the robot. Objects are located along each scan line and
identified if possible. Distance to objects is finally calculated by intersecting
rays through the closest pixels of the object on the image onto the ground
plane the robot is standing on.



12 CHAPTER 2. RELATED WORK

2.3 Obstacle-free navigation in unknown environ-

ments

The problem of obstacle-free autonomous navigation in a completely un-
known environment, has been addressed by several works. Most techniques
can be classified into two major streams: reactive and deliberative naviga-
tion.

In reactive methods, there is a stimulus response relationship between
sensors and actuators, with very limited or no world modeling at all (for
instance, Cf. [2]). In deliberative techniques, a world model is used to for-
mulate plans to which the robot is more or less committed;While reactive
navigation proves to be flexible by virtue of its modular design approach (see
Subsec. 2.3.3), it may fail when confronted with difficult tasks. On the other
hand, deliberative navigation suffers from high computational requirements
and performance degradation in dynamic environments. Based on the idea
that dynamically acquired world models can be used to avoid certain pitfalls
that representationless methods are subject to, a number of mixed solutions
have been proposed, aimed at an efficient integration of world modeling and
planning into reactive architectures Our system navigation draws inspira-
tion from [21], which is somewhat in the line of mixed methods. In fact, it
prescribes the incremental building of a dynamic world representation and
the formulation of plans in accordance.

In the following subsections, we will first focus on navigation approaches
based on an internal representation of robot’s environment, and then we will
shortly discuss reactive approaches.

2.3.1 World-model-based approaches

In this subsection we discuss some ways of representing space and planning
obstacle-free paths over these representations. Finally, we briefly describe a
fuzzy approach to navigation that deals with uncertainty management.

Representing space

In general spatial representation can be divided into two main groups: those
that rely primarily on an underlying metric representation, e.g., spatial de-
composition and geometric representations, and those that are topological
(Cf. [7]). In our case, a metric representation is more suitable since we deal
with distance measures of obstacle lying on the ground, hence in the follow-
ing we will focus on the most common metric representation of a 2D world:
occupancy grid.

Occupancy grid An occupancy grid is obtained by sampling discretely
the two-dimensional environment to be described. The idea is to represent
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the space itself as opposed to representing individual objects within it. This
precludes having to discriminate or identify individual objects.

This sampling can be performed in various ways using a number of dif-
ferent subdivision methods based on the shapes of the objects or, more
commonly, by defining a sampling lattice embedded in space and sampling
space at the nodes so defined. The simplest method is to sample space at
the cells of a uniform grid. Samples taken at points in the lattice express
the degree of occupancy at that sample point.

The main disadvantage of a regular lattice representation is that the
grid resolution is limited by the cell size and the representation is storage
intensive even if much of the environment is empty or occupied.

One alternative is to take advantage of the fact that many of the cells
will have a similar state, especially those cells that correspond to spatially
adjacent regions. From this point of view, two general approaches have been
developed: one is to represent space using cells of a nonuniform shape and
size, but more commonly a recursive hierarchical representation is used. The
most common example belonging to the latter approach is the quadtree.

A quadtree [27] is a recursive data structure for representing a square two-
dimensional region. It is a hierarchical representation that can potentially
reduce storage. Begin with a large square region that encompasses all of
the necessary space. Cells that are neither uniformly empty or full are
subdivided into four equal subparts. Subparts are subdivided in turn until
either they are uniformly empty or full until an a priori resolution limit is
met.

Hierarchical representation systems based on a power of two decomposi-
tion, e.g., quadtree, are not suitable when the space is not well characterized
by a power of two representation. Two alternative spatial decompositions
that are not quite as restrictive as quadtree representations are binary space
partitioning trees (BSP trees) and the exact decomposition method (Cf. [7]
for more details).

2.3.2 Path planning

The general path-planning problem is to find a path t, which from some
initial state A leads the robot to the goal position, trying to minimize the
cost related to a route linking A to the goal, e.g., the length of the path. A
significant literature on path planning exists ([14] provides a wide survey).
Algorithm are constructed based on different theoretical assumptions and
requirements concerning the following:

1. Environment and robot. The structure of the environment, the robot’s
capabilities, its shape, and so forth.

2. Soundness. Is the planned trajectory guaranteed to be collision free?
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3. Completeness. Are the algorithms guaranteed to find a path, if one
exists?

4. Optimality. The cost of the actual path obtained versus the optimal
path.

5. Space or time complexity. The storage space or computer time taken
to find solution.

To render the planning problem tractable it is often necessary to make
a variety of simplifications with respect to the real environment. After an
algorithm has been developed based on some set of assumptions, it must
actually run in the real world. Idealized algorithms for path planning must
be augmented to deal with many annoying realities, e.g., domain uncertainty,
when applied in the field.

Searching a discrete state space

Search algorithms form a fundamental component of many robot path-
planning algorithms. Given a discrete state space (that is a set of possible
problem states obtained, for instance, through spatial decompositions dis-
cussed previously), and a state transition function to determine the states
directly reachable from any given state, a search method is an algorithm to
control the exploration of the state space in order to identify a path from
some initial state to the goal.

Graph search is the most spread class of search methods. A large liter-
ature exists on this kind of searching (for instance, Cf. [22]) that is usually
distinguished in informed and uninformed methods, depending on whether
there is specific knowledge (encoded by an heuristic function h(n), which
estimates the cost of the cheapest path from node n to the goal) about the
search space other then its simply definition, or not. The most widely-known
form of informed search is called A* search, which is optimal and complete,
provided that h is admissible, i.e., it never overestimates the cost to reach
the goal.

Considering unknown environments

One major flaw with many classical path planners is the assumption that the
environment is known in advance. If the world model is inaccurate, then
at some point during the executing of the plan the robot may encounter
an event that makes the plan being executed invalid, and the robot must
re-plan. Thus, the initial plan has been wasted.

Methods that deal with the need to re-plan and can reevaluate the path
as it is being executed are known as on-line algorithms, and the trajectory
they produce is sometimes referred as a conditional plan. A true on-line
algorithm should be able to generate a preliminary trajectory even in the
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complete absence of any map. The bug algorithm [17] is an example of
a simple on-line algorithm for path planning, but it suffers of a too strict
assumption: it considers a robot with a perfect odometry.

A fuzzy navigation example

In selecting an appropriate world model, one must face the fact that the
sensing process of a robotic system may behave in an inaccurate way some-
times. Therefore, rather than reconstruct a deterministic model of the en-
vironment, an uncertain map could be chosen. [21] proposes to define the
map as a fuzzy set : a real number is associated to each point, quantifying
the possibility that it belongs to an obstacle. The resulting representation
is similar to an occupancy map. In [21] navigation is then accomplished by
executing a path that has been computed on the fuzzy map through A*,
which aims at minimizing the risk of collision along a path and its length.

2.3.3 Reactive approaches

The reactive paradigm is based on animal models of intelligence: the overall
action of the robot is decomposed by behaviour, i.e., a mapping of sensory
inputs to a pattern of motor actions, rather than by a deliberative reasoning
process. Common to most reactive systems is that goals may not be repre-
sented explicitly, but rather they are encoded by the individual behaviors
that operate within the controller, that is that module in charge of provid-
ing low-level control of the robot. Overall system behaviour emerges from
the interactions that take place between the individual behaviors, sensor
readings, and the world.

Subsumption control systems These are the best known reactive con-
trol architectures, first introduced by R. A. Brooks. They consist of a num-
ber of behavior modules arranged in a hierarchy of layers of competence.
Different layers in the architecture take care of different behaviors. Lower
layers control the most basic behaviors of the device, e.g., obstacle avoid-
ance, whereas the higher behaviors modules control more advanced func-
tions. Each level of competence includes all earlier levels. A subsumption
architecture consists of a set of independent behaviors that directly map
sensation to action. The behaviors are organized in a static hierarchy in
which lower levels of competence have an implicit priority over higher ones.

The final emergent behavior of the system is the set of reactions that
emerge from the various modules provided to achieve each of these levels
of competencies. The incremental way in which subsumption architectures
are constructed makes them quite straightforward to implement and allows
for a great deal of experimentation and flexibility in terms of system design.
However, given the random nature in which the conditions that trigger the
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various individual behaviors are met, the behavior that emerges from sub-
sumption architecture can be very difficult to judge a priori. Moreover,
debugging a subsumption architecture can be problematic.

2.4 Visual self-localization employing monocular

sensor

We refer to visual self-localization as the problem of localizing the robot in
the environment by exploiting the images taken by its camera. Robot visual
positioning can be carried out either in an absolute way, i.e., w.r.t. a global
framework attached to the environment, or in a relative way, i.e., w.r.t. to
the previous robot pose estimation.

There are many approaches to the problem and we briefly present some
of them in the following.

Landmark measurement This is based on the solution of geometric or
trigonometric problems involving constraints on the position of environmen-
tal landmarks that are visible through the camera. A key issue in practice
is whether the landmarks to be used are artificial or natural. Artificial
landmarks emplaced specifically for the purposes of robot localization are
typically much easier to detect, since they are chosen to be highly visible,
and can be uniquely labeled (that is, their individual identities are known).
Naturally occurring landmarks, on the other hand, preclude having to mod-
ify the environment, but their stable and robust detection can be a major
issue, also because it can require highly complex image processing stages.

Within landmark measurement, triangulation refers to the solution of
constraint equations relating the absolute pose of an observer to the positions
of a set of landmarks. The simplest and most familiar case that gives this
technique its name is that using bearings or distance measurements to two
(or more) landmarks to solve a planar positioning task, thus solving for the
parameters of a triangle given a combination of sides and angles.

Considering the domain of robotic soccer, [11] and [35] provide examples
of triangulation-based self-localization methods that also handle uncertainty
related to visual sensor measurements. [11] deals with natural landmarks
and fuzzy logic whereas [35] employs both artificial and natural landmarks
and makes use of a probabilistic Gaussian approach.

Camera ego-emotion estimation based on epipolar geometry Cam-
era ego-motion estimation of a calibrated camera deals with the case of un-
known movement of the robot camera, where rotation R and translation
t need to be learned from point correspondences between two images (see
[29]). The kind of geometry underlying this method is the same employed
in stereo vision: epipolar geometry.
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[9] proposes an algorithm for ego-motion estimation based on the com-
putation of the fundamental matrix, that represents the mapping between
correspondent points.

The main drawback of this class of methods is related to the corre-
spondence problem, i.e., stating the correspondence between a set of points
belonging to an image and the related set in a second image. The trouble
is that the correspondence problem is inherently ambiguous. For instance,
an unavoidable difficulty in searching for corresponding points is the self-
occlusion problem, which occurs in images of non-convex objects: some
points that are visible in the first image are not visible in the second one
and vice versa.

Optical flow If we take a series of images in time, and the camera is
moving, useful information about camera ego-motion can be obtained by
analyzing and understanding the difference between images caused by the
motion. From an image sequence, a function called optical flow is calculated:
for every pixel, a velocity vector v is found which states how quickly that
pixel is moving across the image, and the direction it is moving.

[1] shows that the problem of ego-motion determination, starting from
optical flow, has been well addressed in literature.

Unfortunately, optical flow is hardly computed if significant change oc-
curs between two consecutive images. This is the reason why optical flow
is not suitable in our system. In fact, our visual self-localization process
(see Ch. 6) employs a mosaic image made of six robot camera pictures as
basic input for its computations, and this limits the rate at which the vi-
sual self-localization can be executed, because it takes a certain time for the
dog to shoot the six pictures composing the mosaic and send them to the
host (approximately, 10 seconds). In order to get small differences between
consecutive mosaic images, we would need to stop the robot for grabbing
pictures after each small step, but this would lead to an unfeasible system
since it would take too much for the robot to move somewhere.

Nongeometric methods: perceptual structure These methods di-
rectly relate appearance or perceptual structure to pose. In this way, they
do not need to invert visual sensor data to make geometric inferences, e.g., as
in landmark measurement or in stereo vision-based techniques. The premise
is that a mapping between sensor data and pose can be constructed directly
without any intermediate representation based explicitly on 2D or 3D scene
geometry.

Interpolation between sample images has been used for pose estimation
and trajectory following, using a principal components encoding of the input
data [19]. By creating a direct mapping for a low-dimensional subspace of
the input images (obtained by eigenvector and eigenvalue analysis) to robot
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joint angles, the robot can use vision to track a prerecorded trajectory.
Other work has achieved accurate pose estimate by using sample images

from either sonar or vision that sample the environment [6]. Images are first
encoded as edge maps and these are then described by vectors of statistical
descriptors. These input vectors are then used to train a neural network
that maps between input images and output pose estimates.

These methods result to be quite unsuitable for our purposes mainly
because they often are based on sample images that we cannot provide since
our domain is initially unknown.



Chapter 3

System structure

The purpose of this chapter is providing a comprehensive idea of the semi-
autonomous navigation system we have developed.

We start giving an brief description of the whole system (section 3.1),
then we discuss about the software modules running on the robot (3.2),
on the host computer (3.3, 3.4), and finally we analyze the mechanisms
underlying the communication among these modules (3.5).

3.1 Overall framework

From an abstract point of view, our system can be seen as a set of coarse-
grained functionalities organized in a two-layer architecture (see Fig. 3.1).
In these architecture, the top layer implements higher cognitive processes
for world modeling and for planning. The bottom layer implements sensori-
motor processes for sensing and perception, and for motion control, which
are connected to a set of robot sensors and actuators.

Moving to a more detailed description, our navigation system is actually
a cyclic process whose main functional components are listed below:

• a user interface that allows the operator to:

1. see what the dog is actually looking through its camera;

2. decide which position of the environment the robot is supposed
to go.

• A unit in charge of establishing an obstacle-free path from the robot
current position to the one selected by the operator. This task relies
on an internal representation of the environment ;

• A module that actually make the robot execute the above path;

• An interface to the sensori-motoric functionalities of the robot. In
particular, these functionalities concern:

19
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Figure 3.1: Abstract diagram of our navigation system. The top layer im-
plements higher cognitive processes (world modeling and planning), whereas
the bottom layer implements sensori-motor processes for sensing and per-
ception, and for motion control, which are connected to a set of sensors and
actuators. The arrows indicate the data flow. Note that there are two out-
going connections in “Sensors”: one is directed into “Perception” and deals
with the visual sensor, whereas the other one goes directly into “Control”
and it deals with joint sensors.

1. translating velocity locomotion commands to an appropriate walk-
ing style;

2. stating the current robot velocities (odometric information);

3. making the robot take environment mosaic pictures. In this work,
we refer to a mosaic picture, meaning a 2(V)×3(H) matrix of 6
robot camera pictures, taken from different head robot positions
(note that the robot camera is located in its head).

• A visual range finder operating on the mosaic images taken by the
robot. The aim of this component is measuring the obstacle distances
from the robot observation point. In order to do that, a previous “iden-
tification” of obstacles in the images, i.e. a segmentation, is needed.

• A visual self-localization procedure that estimates periodically the cur-
rent robot position by working on the mosaic images.

• A module that updates the internal environment representation with
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the information provided by the visual range finder and the visual
self-localization procedure.

Switching to an “application deployment” point of view, the above func-
tional components are actually split between the processing unit resident
on the robot and the processing unit resident on a (Linux) host computer.
This division results from two main criteria:

Different resources: tasks like user interface or sensori-motoric function-
alities “belong” intrinsically to either the host computer or the robot,
respectively. This is because the two platforms provides different re-
sources, e.g., human-computer interaction devices like monitor, key-
board, mouse, etc. in the case of the host computer, and motor devices
in the robot case.

Computing resources: some tasks, especially those concerning visual pro-
cessing, take place on the host computer because of its better comput-
ing resources.

The separation of the system applications, generates a communication issue
between the two platforms. This leads to the introduction of a new system
component, called Fusion Router, that is in charge of managing the informa-
tion exchange between host computer and robot. Fig. 3.2 provides a diagram
representing the main functional components of our navigation system and
their location inside either the host computer or the robot platform.

3.2 Robot modules

In this section, we briefly explain the technology underlying the robot pro-
gramming and then we go in the details of each robot module.

3.2.1 OPEN-R objects

The robot is programmed in a C++ software environment using the Sony’s
OPEN-R software development kit [20]. OPEN-R application software con-
sists of several OPEN-R objects. The concept of an object is similar to one
of a process in the UNIX or Windows operating systems with regard to the
following points of view:

• an object corresponds to one executable file;

• each object runs concurrently with other objects;

The following are characteristics specific to objects:
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Figure 3.2: Navigation system structure divided in host computer and robot
platform. The rectangles drawn with a continuous thick line, represent pro-
cesses in the operating-system meaning; rectangles drawn with a continuous
thin line, represent functional components of the system; the dashed rectan-
gles represent data structures located in main memory, whereas the dotted
rectangle, Image files, represents files. Note that the arrows linking the vari-
ous components, indicate the direction of information flow. This can consists
either in “actual” data, e.g., the pictures sent to FusionRouter by Take and

Send Pictures, or in control signals, e.g., the “take pictures” command sent
to Take and Send Pictures by StandUp.
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• objects exchange information using message passing. An object can
send messages to other objects. A message contains some data and
a selector, which is an integer that identifies a task to be done by
the receiver of the message. When an object receives a message, the
function corresponding to the selector is invoked, with the data in the
message as its argument.

• an object has multiple entry points. Unlike an ordinary programming
environment in which a program has a single entry point “main()” ,
OPEN-R allows an object to have multiple entry points. Each entry
point corresponds to a selector as explained above.

The OPEN-R system layer also provides a set of services (input of sound
data, output of sound data, input of image data, output of control data to
joints, and input of data from various sensors) as the interface to the objects.
These services enable application objects to utilize the robot’s underlying
functionality, without requiring detailed knowledge of the hardware devices
that comprise the robot.

3.2.2 Locomotion Unit

This part of code is strictly related to the path execution module resident in
the host computer (see Subsection 3.3.2). In fact, the path execution module
behaves like a supervisory process that exploits an abstract interface to the
sensori-motoric robot functionalities, which are actually implemented by this
part of robot code.

We employ a subset of the code written by the Swedish “Team Chaos
2004” (Cf. [15]) for the “Legged RoboCup 2004”. In particular, our naviga-
tion system uses the following two services (see Figure 3.2):

• ExecuteVelocities accepts locomotion commands from the path ex-
ecution host module in terms of linear and rotational velocities, and
translates them to the actual robot walking;

• SendOdometry is in charge of sending continuously odometric informa-
tion to the host computer. Odometry is simply obtained multiplying
the last requested robot velocity by a constant slippery factor that
roughly models the frictions between the dog legs and the ground,
during the walk. This is an “open-loop” procedure that leads to quite
imprecise odometrical information. For this reason, we try to get a
more reliable robot position estimation integrating this kind of odom-
etry with the estimation provided by the visual self-localization process
(see Ch. 6).
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3.2.3 Grab Pictures

This part of software concerns the robot response whenever it receives a
command of taking an environment mosaic picture. This command comes
from the host modules during the environment exploration performed by
the robot. Moreover, this command only occurs when the dog is still, i.e.,
its current linear and rotational velocities are zero. In this case, the robot
performs the following operations:

1. it reaches the Sony AIBO’s standard stand-up position (Cf. [30]), start-
ing from a kneeling position. In fact, the walking style employed in
[15], makes the dog walk on its front knees and the robot still re-
mains on its knees when its motion is stopped. Fig. 3.3 illustrates the
stand-up position along with the robot leg joints involved.

The aim of this positioning is bringing the robot to a priori-known
posture before it starts taking pictures. Knowing the “grabbing picture
pose” is extremely important because it allows to build the direct
kinematics part of the calibration matrix (see Subsection 4.2), which,
in turn, enables to state a correspondence between real world object
shot by the robot camera and the related image pixels.

Another reason for standing the dog up is raising the height of the
robot camera, thus allowing for a larger field of view of the pictures.

This pose is achieved through two intermediate postures. Each pose
is specified by a set of angles, related to the joints belonging to the
front and rear robot legs (note that all the other joints, e.g., the head
ones, are not involved in this positioning). The procedure that actually
makes the robot move, is based on OPEN-R primitives (see [32]).

2. The robot moves its head (remember that the camera is located on
the robot head), taking six different pictures that compose a mosaic.
Each picture is shot with a particular combination of pan and tilt head
angle. Fig. 3.4 shows the chronological sequence (within the mosaic)
of the six images taken by the robot, whereas Fig. 3.5 illustrates the
pan and tilt degrees of freedom of our robot neck.

Choosing the pan/tilt angle of each “tile” the composes the mosaic,
is an important issue. The principal aim underlying this choice, is
acquiring as much environment information as possible from a mosaic
picture. This results in:

• maximizing the whole mosaic environment field of view. This is
achieved by trying to shoot non-overlapping environment regions,
between any two contiguous mosaic tiles. This can be realized if:

– the pan angle difference between two horizontal contiguous
tiles (e.g. 1 and 2 in Fig. 3.4), is set to the horizontal field of
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(a) Stand-up position.

(b) Leg joints characterizing the stand-up position, along with their operational lim-
its. Note that in the stand-up position, right and left legs are in the same configura-
tion.

Figure 3.3: Stan-up position (a) and leg joints involved in it, along with a
general description of the degrees of freedom of AIBO’s legs (b).
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123

Figure 3.4: Mosaic composition. The crescent numbers express the chrono-
logical order through which each tile has been acquired by the robot camera.
Note that tiles belonging to the same row have been taken with the same
tilt angle, whereas tiles belonging to the same column have been taken with
the same pan angle.

(a) Pan (b) Tilt

Figure 3.5: Robot pan (a) and tilt (b) neck joints along with their opera-
tional limits and measuring conventions.



3.3. HOST MODULES 27

view of a single tile image. Its value is fovH = 57.6◦, Cf. [30].

– the tilt angle difference between two vertical contiguous tiles,
is set to the vertical field of view of a single tile image. Its
value is fovV = 47.8◦, Cf. [30].

• mosaic images focus on the part of environment belonging to
the ground. In fact, that is the region we are interested in for
navigation purposes. This is obtained by employing negative tilt
values for the mosaic tiles (see Fig. 3.5(b)).

The above considerations lead to the following possible set of pan/tilt
angles for the mosaic tiles (see also Fig. 3.4):

Tile Pan angle Tilt angle

1 −fovH fovV /2 + TiltOffset

2 0 fovV /2 + TiltOffset

3 fovH fovV /2 + TiltOffset

4 fovH −fovV /2 + TiltOffset

5 0 −fovV /2 + TiltOffset

6 −fovH −fovV /2 + TiltOffset

where TiltOffset is a negative angle that “tilts” the mosaic field of
view toward the ground. We actually adopt TiltOffset = −44◦.

The robot digitizing hardware provides images in YCrCb color format
with a 176 × 144 resolution. Once an image has been acquired, it is
immediately sent to the host computer via a TCP wireless connection
(see Section 3.5).

3.3 Host modules

In this section, we explain, with more details, some elements that constitute
the Host Console process, see Fig. 3.2. In particular, we speak about User

Interface (subsec. 3.3.1) and Plan and Execute (3.3.2). The latter one, along
with Map Update, Visual Self-Localization, and Image Processor, are the most
substantial contributions of this work and they are described at length in
chapters 4, 5 and 6.

Note that Fusion Router is treated in Section 3.5.1.

3.3.1 User interface

As already discussed, the main tasks of this unit are:

• providing a visual representation of what the robot is actually looking
through the mosaic of pictures. This is a complex task since each
mosaic tile shoots a different region of the environment with particular
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angles (see Section 3.2). Hence, a “fusion” procedure of the mosaic
tiles is needed, in order to get a panoramic picture, representing a
coherent vision of the environment to be presented to the operator.
The main input to this procedure are the images taken by the robot
and stored on the host computer file system, see Fig. 3.2. Refer to
Section 3.4 for further details about the panoramic image building.

• Allowing the operator to decide which location of the environment the
robot must reach. Provided that the operator’s environment knowl-
edge, relies only on the information acquired by the robot, the most
logical way to indicate a goal position to the robot, is dealing directly
with the internal environment representation of the robot, i.e., Envi-

ronmental Map in Fig. 3.2.

What we actually do, is showing to the operator the map that has been
built by the robot up to now, and waiting until the operator clicks on
a cell of the map (Fig. 3.6 shows the related window). After that, a

Figure 3.6: Environmental map window. This is shown every time the
operator has to indicate a robot goal position by clicking on it. This map
was obtained by positioning the robot in front of a sharp-cornered obstacle.

path to the goal is planned and visualized to the operator. Then, the
path execution procedure starts. Once the robot reaches the desired
position, the operator can select another goal.

3.3.2 Plan and execute

Planning directly works on the environment map stored within Host Console

(see Fig. 3.2), looking for an obstacle-free path from the Estimated Robot

Position to the operator-selected goal (see Section 5.2 for further details).
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Once a suitable path has been computed, the path execution procedure
is invoked in order to make the dog reach the goal. During this phase, a
strong cooperation with the robot modules is required. In fact, in order to
follow the planned path, path execution needs to command proper velocities
to the robot and check how it is actually executing them, through odometry
information received by SendOdometry (see Fig. 3.2). Therefore, a bidirec-
tional communication with the dog is demanded. This is realized through
the Fusion Router component (see Section 3.5).

Following a path, includes reaching some intermediate environment lo-
cations, the so called way-points (see Subsec. 5.3.1). In order to make path
execution as much precise as possible, i.e., to make the robot final position
as much close to the goal as possible, a periodical robot self-localization is
required, i.e., a “refresh” of Estimated Robot Position. In fact, information
provided by SendOdometry are not enough for this aim (see Sec. 3.2). There-
fore, at each way-point a Visual Self-Localization is performed (see ch. 6).
Provided that Visual Self-Localization relies on what the robot is currently
looking, path execution must command the dog, through Fusion Router, to
take a mosaic picture, before invoking Visual Self-Localization.

3.4 Panoramic images

In this section, we illustrate the building of panoramic images to be pre-
sented to the operator, starting from mosaic images taken by the robot.

Panoramic images are an important mean to provide the operator with
a wide view of the environment as it is “seen” from the robot.

In literature, panoramic images obtained from image sequences, are of-
ten carried out through a registration stage followed by a blending operation.
The first one, which is much more relevant, starting from corresponding pix-
els belonging to a pair of overlapping images, computes the transformation
from one image to the other, e.g., Cf. [34]. The last one is performed to
“average” the two images in the overlapping region, and can be achieved,
for instance, through a bilinear function. There should be noted that an
automatic selection of corresponding pixels that allows to register images in
an accurate way, is still a relevant problem.

Anyway, in our case the above techniques are hardly applicable since our
mosaic tile pictures present small overlapping regions (see Subsec. 3.2.3). For
this reason, we have developed three alternative ways to obtain panoramic
images that do not make use of registration. They are listed here below in
a complexity order.

3.4.1 Array of images

The first solution we have implemented is the simplest and obvious one: we
just display the six tile images positioning them on the same flat plane in a
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Figure 3.7: Tile images are placed on the same flat plane in a 2 × 3 grid.
The operator does not have an homogeneous vision of the environment in
front of the robot.

2 × 3 grid, with sides attached to each other just as tiles in a mosaic. The
positioning process is performed assigning to each tile a grid cell, according
to the pan and tilt angle the image has been taken with, see Sec. 3.2.3.

The resulting mosaic gives the operator a general idea of the environment
surrounding the robot, but it suffers of some drawbacks. It does not seem a
homogeneous image, mainly because image tiles appear on the same plane
even they have been actually acquired on 6 different image planes, i.e., the
planes corresponding to the particular combinations of pan and tilt angles
related to the camera rotation.

3.4.2 Pan/tilt rotation

The main idea of this approach is to rotate the previous tile images in a
virtual space, created using OpenGl, in order to resemble the actual position
of the various tile image planes during the mosaic acquisition. In fact, we
rotate tile images around according to their pan/tilt angles. To perform it,
we need to know the distance f , i.e., the focal length, between the center of
rotation, i.e., the focal point, and the image plane, expressed in the virtual
3D world coordinates. It can be computed knowing the horizontal field of
view, fovH , and the horizontal resolution, dx, of the image as follows, (see
Figure 3.8):
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f

Figure 3.8: The focal length f is obtained considering the field of view of
an image, fov, and the size of the image, d.

f = fh =
dx

2 tan fovH

2

where fovH = 57.6◦and dx = 176 pixels. However, f can be computed also
using the vertical field of view and vertical resolution of the image, yielding
fv. Since fh and fv result to be slightly different, due to rounding errors,
we decide to use the average f = fh+fv

2 .

The mosaic, resulting from the rotation of each tile, shows a more re-
alistic view of the world than the procedure described in Sec. 3.4.1. In
particular this method provides a more realistic perception of depth in the
environment.

A drawback of this method is the presence of discontinuities due to the
use of flat images, see Figure 3.9. To avoid this problem we have employed
the following method.

3.4.3 Spherical projection

This method creates a “smooth” panoramic view of the environment, ob-
tained projecting each of the six tile images onto the surface of a semi-sphere
with radius equal to the focal length f . The observer point of view is ideally
in the center of the sphere, i.e., in the focal point.

We use an approximated method to achieve this projection, exploiting,
as in the previous subsection, OpenGl to create a virtual 3D space. The
approximation concerns the division of each picture in N × N rectangle
elements. Each of them is, then, reshaped and moved in order to wrap the
semi-sphere surface. If N is too small, discontinuities in the final panoramic
view will be visible. On the other hand, if N is too high, the computational
load will slow down the execution. We find that N = 24 may be a good
trade-off between quality and efficiency.
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Figure 3.9: The six tile image planes are placed in a 3D virtual world in order
to resemble their actual position during the mosaic acquisition performed
by the robot camera. Note that the upper-lateral rotated tiles, i.e., tile 1
and 3, partially occlude the lower-lateral ones, i.e., tile 4 and 6.
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Figure 3.10: Here is shown the subdivision along one dimension of a tile
image. This is divided into elements of equal field of view, α. The projected
elements on the sphere surface have equal size, i.e., P−3P−2 = P−2P−1 =
P−1P0 = P0P1 = P1P2 = P2P3 . By contrast, on the image plane, the lateral

elements are bigger than the central ones, e.g. P
′

2P
′

3 > P
′

0P
′

1

The building of such panoramic image can be decomposed into these
subtasks to be performed for each element :

1. creation of a rectangle element, through the division of the image;

2. reshaping of the element ;

3. rotation of the element, in order to place it on the sphere surface.

In the following paragraphs we explain how we have solved these subtasks.

Creation of the element We divide each image in rectangle elements of
equal field of view, w.r.t. the focal point, see Figure 3.10. Note that elements

close to the image borders, e.g., P
′

2P
′

3 or P
′

−2P
′

−3 in the Figure, have a larger
dimension than the central ones. By contrast the projected elements have
equal length, i.e., P−3P−2 = P−2P−1 = P−1P0 = P0P1 = P1P2 = P2P3.

Reshape of the element The next step is to cover the semi-sphere sur-
face with elements. In order to do that, first, we divide the sphere in a grid
and then we fit each element in the corresponding grid cell.

There are different ways to draw a grid around a sphere and we used the
meridian/parallel scheme, see Figure 3.11. Latitude is the angle correspond-
ing to a parallel whereas longitude that one corresponding to a meridian.
Each cell of the resulting grid has a constant height, because the arc length
between two parallels is constant. On the contrary, the width depends on
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Figure 3.11: Division of the sphere in meridians and parallels. Each cell
of this grid has a constant height and a variable width depending on the
latitude.

the latitude, i.e., cells near to the “poles” of the globe have smaller width
those close to the “equator”.

In order to approximately fit the grid cell in a proper way, we choose to
reshape the original rectangle element into a trapeze, because it resembles
more the cell of the grid than a rectangle and fits better the slice between
two meridians, see Figure 3.12.

Rotation of the element Each element is associated with a particular
grid cell, depending on the image it belongs to, and on its location within
the tile image itself. As last step, each element is rotated around the center
of the sphere according to the latitude and the longitude of the cell to be
filled. Once all the elements have been created, reshaped into a trapeze and
rotated in the correspondent cell, the panoramic image is completed and
wraps the surface of the sphere, see the result in Figure 3.13.

The panoramic image, obtained using the method so far described, offers
better results than that ones described in the previous sections, because it
does not suffer of the disadvantages of the others.
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Figure 3.12: A grid cell of the sphere, drawn with a thick line, is fitted better
by a trapeze than a rectangle, because of the different width of the bases.

Figure 3.13: Panoramic image: projection on a sphere surface of the set
of images. The point of view of the observer is set in the center of the
sphere. The field of view of the whole image is 172.8◦ horizontally and 95.6◦

vertically.
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3.5 Middleware

As we already explained, the separation of system applications between
two platforms, produces a communication issue. Also the partition of host
computer modules in different operating system processes, gives rise to inter-
communication issues within the host platform. In the following subsections,
we discuss both the topics.

3.5.1 Fusion Router

Fusion Router embodies the connection between host platform and robot.
It exploits the Remote Processing OPEN-R (RP OPEN-R) technology, de-
veloped by Sony, Cf. [31]. RP OPEN-R is a remote processing environment
where it is possible to execute an OPEN-R based program on a remote host
which is not an AIBO. By using RP OPEN-R, some OPEN-R objects can
be executed on the remote host (connected to AIBO via wireless LAN), and
other objects can be executed directly on AIBO. All objects will be exe-
cuted as one program, distributed between the two machines. In this way,
Fusion Router, Locomotion Unit and GrabImage (see Fig. 3.2) run on the same
“virtual” platform and their physical separation is almost hidden to the pro-
grammer that does not have to care about middleware routines. In fact, the
communication between AIBO’s objects and the remote host object (Fusion

Router), is done by extending the ordinary message-passing protocol of the
OPEN-R inter-object communication (Cf. [31]) over the wireless LAN. Note
that RP OPEN-R implementation actually relies on the TCP.

3.5.2 Communication among host processes

All the communications among host processes are done via UDP. This is a
straightforward solution that allows to connect easily two processes. Note
that UDP is not a reliable protocol, but, since we deal with processes on
the same machine, we do not need that characteristic since the physical
connection is intrinsically robust.

An issue related to the use of UDP, is the serialization (marshalling) of
complex data structure, e.g., struct, that must be performed by the sender
process before it sends data to the receiver process. On the other way, the
receiver must unmarshall the received byte stream in order to recover the
original data structure.

Here is the list of UDP connections employed in our system (refer to
Fig. 3.2):

• Fusion Router −→ Host Console : used for transmitting odometry in-
formation originated in SendOdometry;

• Host Console −→ Fusion Router : used for transmitting velocity com-
mands that will be received by ExecuteVelocities;
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• Fusion Router −→ Segmentation : control signal used to notify the
presence of new available image files. In fact, whenever the robot
finishes to acquire a mosaic picture, it sends it to Fusion Router that,
in turn, saves it to files.

• Visual Range Finder −→ Map Update : used for transmitting obstacle
ranges;
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Chapter 4

Obstacle detection

In this chapter, we provide the details of the “visual sensory” part of our
navigation system, which includes the segmentation of robot input images
(section 4.1) and two possible methods employed for finding obstacle ranges
(4.3, 4.4). The last ones work on the segmented images with the aim of
stating properties of real world points, i.e., the obstacles distances from the
robot. In order to do that, a previous understanding of how the environment
is “mapped” onto the images shot by the dog, is needed (4.2).

4.1 Segmentation

Once the robot has taken some pictures of the surrounding environment seg-
mentation is the first step to be done in order to extract useful information
from the “raw” image data.

The general purpose of segmentation is partitioning an image into mean-
ingful regions.

Provided that avoiding collision is essential during the navigation, our
particular aim is to separate what is free ground from what is not, i.e.,
obstacles. A priori knowledge of the environment is needed to achieve this
classification and it can consist either in information about the “free ground”
or about the “obstacle”.

Since we deal with a general rescue environment the definition of “ob-
stacle” should be as less constrained as possible, for instance think about
a collapsed building scenario with any kind of debris and rubble on the
ground. Therefore it is better to specify the “free ground” and we have
done this in two possible ways: either prompting the operator to indicate
a “free ground” area in the images or making some assumptions regarding
the location of “free ground” in the pictures. From a procedural point of
view, the main difference between these solutions is that the second one is
automatic whereas the first one is not. We shall discuss both solutions and
compare them in subsections 4.1.2, 4.1.3, and 4.1.4, respectively.

39
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Color space thresholding (see Subsec. 4.1.1) is the approach we use for
segmenting because, even if it is a simple solution, it is more efficient than
edge-based and region-based techniques and it is usually quite effective in
background-objects classification problems like ours.

The threshold selection method is treated in 4.1.5, whereas image-enhancing
filters to be applied just before or after the thresholding stage, are described
in 4.1.6.

4.1.1 Thresholding

The following paragraphs give a brief explanation of gray-level and multi-
spectral thresholding and describe the reasons we have chosen the latter
one.

Monochromatic input images

Gray-level thresholding is the simplest segmentation process. Many objects
or image regions are characterized by costant reflectivity or light absorption
of their surfaces; a brightness costant or threshold can be determined to
segment objects and background.

Thresholding is the transformation of an input image f to an output
(segmented) binary image g as follows:

g(i, j) = 1 for f(i, j) ≥ T

g(i, j) = 0 for f(i, j) < T

where T is the threshold, g(i, j) = 1 for image elements of the background,
and g(i, j) = 0 for image elements of the objects (or vice versa), Cf. [29].

Color input images

Many practical segmentation problems need more information than is con-
tained in one spectral band because this usually results in a more effective
classification.

Color Space Transformation Our approach involves the use of thresh-
olds in a three dimensional color space. Several color spaces are in wide
use, including Hue Saturation Intensity (HSI), YUV (or YCrCb) and Red
Green Blue (RGB). The choice depends on several factors including which
is provided by the the digitizing hardware and utility for the particular ap-
plication.

RGB is a familiar color space often used in image processing, but it
suffers from an important drawback. In fact, we would like our classification
process to be robust in the face of variations in the brightness of illumination,
so it would be useful to define a particular color (for instance the ground)
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in terms of a ratio of the intensities of Red Green and Blue in the pixel.
This can be done in an RGB color space, but the volume implied by such a
relation is conical and cannot be represented with simple thresholds.

In contrast, HSI and YCrCb have the advantage that chrominance is
coded in two of the dimensions (H and S for HSI or Cr and Cb for YCrCb)
while intensity is coded in the third. Thus a particular color can be described
as “column” spanning all intensities, Cf. [3].

We have chosen to work with YCrCb because our robot provides these
colors in hardware. This combines the power of a robust color space without
the performance penalty of a software color space transformation.

Classification criterion Our segmentation approach determines thresh-
olds independently (see Subsec. 4.1.5) in each spectral band of chrominance
(Cr, Cb), and combines them into a single segmented image.

The ground color class is specified as a set of four thresholds values: two
for each dimension in the chrominance space. We exclude the Y component
since we intend to reach a more robust classification, i.e., a classification
that is possibly independent of the environment light conditions.

A pixel with values Cr, Cb is classified through the following comparisons:

if ( (Cr ≥ Crlowerthresh)

AND (Cr ≤ Crupperthresh)

AND (Cb ≥ Cblowerthresh)

AND (Cb ≤ Cbupperthresh))

pixel color = 1; //free ground

else

pixel color = 0; //obstacle

4.1.2 Semiautomatic solution

In this strategy, the operator has to select (via mouse) a rectangular area in
each picture composing the mosaic image provided by the robot (see Sub-
sec. 3.2.3), whenever it grabs pictures. The selected picture portion, which
should contain almost free ground, is used to compute the four thresholds of
the ground color and the resulting segmented picture is immediately shown
to the operator so that he can evaluate the outcome of his previous choice
and either decide to select again over the same picture or the next one in
the mosaic. See Fig. 4.1.

4.1.3 Automatic solution

This procedure is based on the assumption that the lower half of the mosaic
image lower row, i.e., the lower half of each of the three mosaic tiles acquired
with lower tilt angle (see Subsec. 3.2.3), contains almost only free ground (see
Fig. 4.2). This hypothesis makes possible to avoid the operator intervention
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Figure 4.1: Snapshot related to the free-ground area selection task: the
left window shows one of the mosaic “tile” YCrCb image provided by the
dog together with the current operator selection rectangular area; the right
window shows the result of segmentation applied to the left window image

Figure 4.2: RGB mosaic image (see Subsec. 3.4.1 to understand how it has
been obtained). Note that the lower half of the mosaic tiles belonging to
the lower row, contains almost only free ground.
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and develop an automatic algorithm.

Our approach consists in extracting four thresholds from each lower half
of the above discussed three pictures, averaging them with the same weight
and applying the derived thresholds to the whole the mosaic image.

4.1.4 Comparison

Of course the biggest advantage of the automatic solution is freeing the
operator of the segmentation burden. The assumptions are not so restrictive
because the three low-tilt mosaic tiles represent an environment zone which
is very close to the robot, hence supposing the lower half of them are without
obstacles, is reasonable to the extent that the whole navigation process does
not bring the dog in the immediate obstacle vicinity.

The major drawback is that the same thresholds are used in all the
mosaic tiles and this leads to a more noisy classification than in the semi-
automatic system where it is always possible determining thresholds from
a free ground area in each tile. This is especially evident for the high-tilt
tiles because the final thresholds do not take in account them in the average
whereas the ground color could slightly vary in the mosaic tiles due to its
eventual inhomogeneity.

4.1.5 Threshold selection

The way thresholds are computed is the same in both the above solutions
although input to the threshold selection task is respectively an operator
defined cropped image or a low-half tile picture.

The input image is decomposed in two channels (Cr,Cb) and the his-
togram is calculated from each one. Every histogram is then used indepen-
dently to compute two thresholds representing the ground intensity range
in a particular band. In fact, as we assume that the input image contains
almost only free ground, each histogram has a main peak related to the prin-
cipal intensity characterizing the ground in a specific channel and a series
of smaller peaks related mainly to secondary ground intensities, and also to
obstacles that are eventually present (See Fig. 4.3). Actually the thresholds
are two local minima respectively on the right and left side of the histogram
absolute maximum corresponding to the above discussed main peak. Being
local minimum, a threshold coincides with the “valley” between two adja-
cent ground intensity peaks. This allows to consider selectively the ground
“shades”, depending on the way these local minima are chosen. We choose,
on both the above referred sides, the closest local minimum to the absolute
maximum that satisfies the condition

abs max

local min
> RATIO
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(a) Free-ground cropped image

(b) Histogram of the Cr channel of the
cropped image

(c) Histogram of the Cb channel of the
cropped image

Figure 4.3: Histograms (b-c) of the two chrominance components of the
YCrCb free-ground selected image (a). You can clearly see the main peak
in each histogram. Note that the shown histogram x-axes (horizontal ones)
range from 0 to 255 whereas the shown y-axes range from 0 to the maximum
value in each histogram function.
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where RATIO is a parameter characterizing the selection rule: the bigger is
RATIO the wider is the range defining the ground in each color component.
It is usually better considering an high value of RATIO in order to cover
all ground shades. On the other hand, taking an extremely high value of
RATIO implies including almost everything in the class “ground” making
segmentation a useless process. We usually consider RATIO = 100.

If such a minimum is not found we search for the last bin satisfying
abs max

freq value
> RATIO, where freq value is the frequency value related to

the current considered bin. Searching starts either from bin 255 or bin 0
(the histogram is a frequency function whose domain has 256 (0..255) values
called bins), depending on whether the not-found minimum is the right-side
one or the left-side one. In both cases, searching goes toward the absolute
maximum.

Here is the algorithm in brief (for sake of clarity it does not contain the
above mentioned particular case):

int histogram[256]; //the histogram is a frequency function

//whose domain has 256 (0..255) values

//called ’bins’

int abs max;

int abs max bin;

int right local min;

int right local min bin;

int left local min;

int left local min bin;

int search start bin;

find abs max(); //initializes abs max and abs max bin

//searching for the right local minimum

search start bin = abs max bin + 1;

right local min = MAX INT;

while (abs max/right local min < RATIO){
//updating right local min and right local min bin

find first right minimum(search start bin);

search start bin = right local min bin + 1;

}

//searching for the left local minimum

search start bin = abs max bin − 1;
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left local min = MAX INT;

while (abs max/left local min < RATIO){
//updating left local min and left local min bin

find first left minimum(search start bin);

search start bin = left local min bin − 1;

}

where MAX INT is a very high integer value used for initializing a minimum
search.

4.1.6 Filtering

We use some filters before and after the thresholding procedure explained
so far in order to improve the quality of the whole segmentation process.

Pre-filters

1. Provided that the robot camera pictures contain a systematic noise
in the lower-left corner, i.e., sixteen pixels almost of the same color
(green), we substitute each of these pixels with an average of its neigh-
bouring pixels. See Fig. 4.4.

(a) Noisy image. The noisy
pixels are in the circle.

(b) Filtered image

Figure 4.4: Filtered image (b) resulting from having substituted each of the
sexteen noisy pixels in (a) with an average of its neighbouring pixels.

2. Then we use a Gaussian filter with σ = 1 to smooth the images.
This is a general image pre-processing technique for noise filtering.
(PICTURES)
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Post-filters

Once an image has been thresholded, we apply a 4-connectivity majority
filter which sets each pixel to either 1 or zero depending on the majority
value of its 4-connected neighbors. Then, the resulting image undergoes a
double 4-connectivity erosion. The aim of the series of these two filters,
is to eliminate isolated small groups of noisy pixels, i.e, wrongly classified
“obstacle” pixels. See Fig. 4.5.

(a) Source YCrCb
“tile” image with the
active free-ground
selection area used
for thresholding.

(b) Thresholded
image. Look at the
misclassified pixels,
e.g., isolated black
pixels and small
isolated groups of
object pixels located
in the bottom-right
corner and close to
the right ball.

(c) Image resulting
from applying a
majority-vote filter
to the thresholded
image. Isolated pixels
from (b) are removed
but the small groups
still remain.

(d) Final segmented
image obtained by
applying two erosions
to the majority-vote
filtered. The small
groups of wrongly
classified object pix-
els are finally filtered
out. image

Figure 4.5: Post filtering chain: source image (a) is thresholded in (b) that is
filtered with a majority-vote filter. This results in (c) that is finally filtered
through two erosions giving the final image (d)
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4.2 Mapping between real world and image plane

In this section, we focus on the relation between real world points and pixels
belonging to the image plane of a particular mosaic image tile.

This mapping can be expressed, using homogeneous coordinates, with a
matrix K, called calibration matrix.

This approach is based on the decomposition of K in two parts:

1. A matrix that expresses the position and orientation of a frame at-
tached to the robot camera with respect to a dog’s body framework.
It depends both on extrinsic parameters related to the robot specifi-
cation, as joint lengths and location of rotation centers, and on the
particular pan and tilt characterizing a particular image taken by the
dog (see Section 3.2.3). It is called direct kinematics transformation
T c

b . The subscript b stands for the base framework which stands on
the ground and whose origin origin coincides with the projection of the
head/tilt center on the ground. The superscript c, instead, stands for
the framework with origin coinciding with the center of the camera,
located in the robot head (see Figure 4.6 and Figure 4.8).

2. A matrix that expresses the perspective projection of the world points
into the image plane. It depends on intrinsic parameters that are
related to the camera itself, e.g., focal length and pixel dimension. It
is called perspective transformation Ω.

The calibration matrix is expressed as follows:

K = ΩT c
b (4.1)

and the relation between the image pixel P c
I , expressed in c framework, and

the 3D world point P b is:

P c
I = KP b (4.2)

In the remainder of this section, we first discuss the direct kinematics
transformation (subsec. 4.2.1) and the perspective transformation (4.2.2).
After that, we speak about the points belonging to the real world, and more
specifically to the ground (our region of interest), that are actually visible
from the image plane (4.2.3). Finally, we describe the inverse transformation
that allows to infer the ground position of a point that is projected into a
given pixel (4.2.4).

4.2.1 Direct kinematics transformation

Direct kinematics transformation is the matrix transformation that allows
to express a generic point p from b-coordinates (pb) to c-coordinates. This
relation is expressed by:
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(a) Schema of the robot model where P and
T are pan and tilt rotation centers and C is
the camera. In this figure, the robot has tilt
θ = 0 and pan φ = 0.
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orientation of {b}
and {c} frames

Figure 4.6: Direct kinematics transformation is the matrix transformation
that allows to express a generic point p from {b}-coordinates (pb) to {c}-
coordinates (pc)

pc = T c
b pb (4.3)

In order to compute T c
b , we need to know the chain of rotations and

translations that leads the {b} framework to the {c} framework, see Fig-
ure 4.6. Using the AIBO model specifications, we achieved the following
intermediate transformations, expressed using homogeneous matrices:

• Ab
0, translation of h along zb-axis, with h = (64.9+64+50) = 178.9 mm

that is the height of the head tilt center from the ground plane, see
Figure 4.7(a);

• A0
1, rotation of −π

2 around x0-axis, see Figure 4.7(b);

• A1
2, rotation of π around z1-axis, see Figure 4.7(c);

• A2
3(θ), rotation around x2-axis of the tilt angle θ1, see Figure 4.7(d);

• A3
4, translation of p along y3-axis, with p = 48 mm that is the difference

between heights of the head pan center and the head tilt center from
the ground plane, see Figure 4.7(e);

1θ is measured in the opposite way with respect to the convention assumed in Fig. 3.5(b)
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• A4
5(φ), rotation around y4-axis of pan angle φ, see Figure 4.7(f);

• A5
c , translation along z5-axis of l = 66.6 mm that is the distance

between the camera plane and pan rotation center, see Figure 4.7(g).

The multiplication of the previous matrices, expresses the complete trans-
formation that leads {c} to {b} framework.

T b
c = Ab

0A
0
1 . . . A4

5A
5
c (4.4)

Since (4.4) expresses the coordinate transformation from {c} to {b}
frame, according to the relation

pb = T b
c pc, (4.5)

we have to invert it to achieve the coordinate transformation from {b} to
{c} frame, that is what we actually need.

Inversion of T b
c is:

T c
b = (T b

c )−1 =

= (A5
c)

−1(A4
5)

−1 . . . (A0
1)

−1(Ab
0)

−1 =

= Ac
5A

5
4 . . . A1

0A
0
b

(4.6)

Since each transformation is elementary, i.e., composed by only a rotation
or a translation around/along an axis, the inverses are easily computed
considering the opposite angle for rotations and the opposite direction for
translations.

4.2.2 Perspective transformation

The second component of the calibration matrix is the perspective matrix,
which models the process of projection of a world point, expressed in a
framework attached to the image plane (this can be done through the direct
kinematics transformation), into the image plane. In order to explicit this
matrix, we have used the pinhole camera model that is one of the most
widely used in computer vision and robotics (Cf. [7] and [28]).

A point of an object is projected through a pinhole or optical center of a
camera onto a unique location on the planar image surface (see Figure 4.9).
The equations that describe this projection are:











X = fpc
x

f−pc
z

Y =
fpc

y

f−pc
z

(4.7)
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(g) Translation of l = 66.6
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Figure 4.7: Chain of rotations and translations that leads the {b} framework
to the {c} framework. Note that each rotation subfigure shows the rotation
axis and an arrow indicating the positive rotation direction.
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(a) Body model (b) Head model

Figure 4.8: Model specification with measures expressed in mm

F

yc

xc

zc

(pc
x, pc

y, p
c
z)

Oc

f

(X,Y )

Figure 4.9: Perspective transformation



4.2. MAPPING BETWEEN REAL WORLD AND IMAGE PLANE 53

where (X,Y ) are the projected point coordinates and f is the focal length of
the camera (intrinsic parameter). These coordinates are expressed in mm,
whereas the following equations yield coordinates in pixels:











XI = αxfpc
x

f−pc
z

+ X0

YI =
αyfpc

y

f−pc
z

+ Y0

(4.8)

X0 Y0 are values, expressed in pixel, that allow to move framework {c}
center. We decide to move it in the left down corner of the image.

αx and αy are scale factors that realizes the conversion between mm and
pixels. These values are parameters dependent on the camera sensor used.
The camera installed on AIBO is a 1/6 inch format CMOS sensor. This
format has an actual sensor diagonal of 2.7 mm (the actual diagonal is not
simply 1/6 inch long), e.g., Cf. [18]. The images are gathered at a resolution
of 352(H)×288(V) but robot middleware restricts the available resolution
to a maximum of 176(H)×144(V), which is the resolution employed in our
system.

Thus, knowing the sensor diagonal and the pixel numbers, the square
pixel has a side

dim =
2.7√

1762 ∗ 1442
= 11.87 µm

Scale factors are computed as follows:

{

αx = 1
dim

αy = 1
dim

This transformation is not linear but it can be written in a linear form
exploiting the homogeneous coordinates of a point (xi, yi, zi):







XI = xi

zi

YI = yi

zi

(4.9)

Using homogeneous coordinates for both (XI , YI) and (pc
x, pc

y, p
c
z), Eq. (4.7)

is reformulated as following:





xi

yi

zi



 = Ω









pc
x

pc
y

pc
z

1









(4.10)

with

Ω =





αx 0 X0 0
0 αy Y0 0
0 0 1 0













1 0 0 0
0 1 0 0
0 0 − 1

f
0

0 0 0 1









(4.11)
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P
′

P̃

F
′

Figure 4.10: Symmetry about focus

However, (XI , YI) found with Eq. 4.9 is not the right result because the
pinhole camera model as you can see in Figure 4.9, inverts the projected
image. We discuss this problem in the following paragraph.

Y-coordinate inversion

The perspective projection has a “side effect” that is similar to a symmetric
transformation about a point: it inverts the position of a point P with
respect to the focus (see Figure 4.9).

If P
′

is the orthogonal projection on the image plane of P and F
′

the
one of F , you can observe in Figure 4.10, that P̃ , the perspective projection
of P with respect to F, is symmetric to P ′ with respect to F’. Thus, in order
to map the real world in the proper way (not upside down) it is necessary
to apply another transformation.

Y-coordinate must be inverted to see the image downside up, whereas
the X-coordinate must not be changed for the following reason:

image to be in the focus center and looking at the 3D world, in order to
see the same scene projected onto the image plane we need to turn back. In
this way what it was for instance on the left in the 3D world, is projected
again on our left onto the image plane. On the contrary, turning back, what
was up in the 3D world is projected down onto the image plane and that is
the reason we need a Y-inversion.

According to these considerations, inversion around the center of the
image, (X0, Y0), is needed only for the y-coordinate.

Eq. (4.8) is then substituted by the following:
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z

x

O′

O

α

r

F

Figure 4.11: 2D lateral section of the world, where α is the image plane,
F the focus point of the pinhole camera model and O is the origin of {b}
frame. This is a counter example that shows that O projection, O’, is not
correctly projected because F is not between O and O’ along the projection
line r.

{

XI = αxfpc
x

f−pc
z

+ X0

YI =
−αyfpc

y

f−pc
z

+ Y0

(4.12)

and the perspective matrix becomes:

Ω =





αx 0 X0 0
0 −αy Y0 0
0 0 1 0













1 0 0 0
0 1 0 0
0 0 − 1

f
0

0 0 0 1









(4.13)

4.2.3 Visible field

Now that we have found the calibration matrix, it is easy to map a point of
the world into the correspondent pixel into the image. However, the domain
of the transformation is not the whole ℜ3 space.

The following is a counter example, see Figure 4.11: point O = [0 0 0]T

is not correctly projected (accordingly with the pinhole camera model), be-
cause line r that contains O and F , intersects the image plane α in a point
O′ that is between O and F . O′ could be accepted only if F were between
the point to project O and the projected point O ′, along line r.

It is useful to formulate the following:



56 CHAPTER 4. OBSTACLE DETECTION

P ′

P

F

I II III

α α′

(a) Point P in region I is not
visible because F is not in PP’

P ′

P

F

I II III

α α′

(b) Point P in region II is not
visible because F is not in PP’

P ′

P

F

I II III

α α′

(c) Point P in region III is vis-

ible because F is in PP’

Figure 4.12: Lateral sections of the 3D world, with the image plane α, the
focus F , the plane α′ parallel to α passing through F and a point P with its
projection P’. P is visible only if it is located in region III.

Definition 1. A point P is called visible from a plane α with respect to a
focus F , if the line r that contains P and F intersects α in a point P ′ such
that F belongs to the segment PP ′.

In Figure 4.12(c) point P is visible because F belongs to segment PP ′.
The locus of visible points Γ, according to Definition 1, is deduced by

the following theorem:

Theorem 1. The subset of ℜ3 that is the locus of visible points from the
image plane α with respect to a point F , is the half-space of ℜ3 that is
bounded by the plane α′ parallel to α passing through F and that does not
contain α.

Proof. The possible regions of analysis are I, II, III, planes α and α′ (see
Figure 4.12):
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• all points of III are visible by definition;

• a generic point P in II yields to a segment P ′PF , therefore P is not
visible by definition;

• a generic point P in I leads to a segment PP ′F , thus P is not visible
by definition;

• P in α leads to P ≡ P ′ and then to PP ′F or P ′PF , so P is not visible
by definition;

• with P in α′, P ′ cannot be determined because line r connecting P
and F is parallel to α.

According to Theorem 1, if a point P is not in the region Γ of visibility,
its projection is not determinable.

So far we have analyzed the visibility of points in ℜ3, in the following
paragraph we will focus on the subset of Γ that includes only points laying
onto the ground plane, which is the world region of interest of our system.
We call this subset ground visible field, Λ.

Ground visible field

The purpose of this paragraph is to find a sufficient condition that guarantees
that a ground point P (x, y, 0) is visible from the image plane characterized
by a pan φ and a tilt θ angle. This is achieved, for instance, defining a
subset of the ground visible field that depends only on the tilt angle θ of the
image plane, whereas the pan angle φ can have any value of its range.

Tilt and pan angles of interest for this project are θ2 ∈ [−π
2 , 0], φ ∈

[−π
2 , π

2 ], (the angle ranges actually employed in the implementation are
slightly different, see subsec. 3.2.3).

Let αφ,θ be the image plane with pan φ and tilt θ, we call ΣF
φ,θ the ground

visible field from the image plane αφ,θ w.r.t. the focus point F:

ΣF
φ,θ = {P (x, y, z)|z = 0 ∧ P is visible from αφ,θ w.r.t. F}

The region we are interested in, is:

Λ = ΣF
φ =

⋂

θ∈[−π
2

,0]

ΣF
φ,θ

and as you can see in Figure 4.13

2Here θ is measured accordingly with the tilt-angle AIBO’s convention, see Fig. 3.5(b).
From now on, we will always adopt this convention.



58 CHAPTER 4. OBSTACLE DETECTION

z

xO

θ

F

P

T

ΣF
φ,θ

α
α′

(a) Ground visible field ΣF
φ,θ

when θ < 0

xO

z

F
P

T

ΣF
φ,θ

α α′

(b) Ground visible field ΣF
φ,θ

when θ = 0

Figure 4.13: Lateral section of the 3D world with the robot model. T and P
are respectively the pan and tilt rotation center. α is the image plane and
α′ is its parallel through the focus F. The visible ground field r is minimum
when θ = 0

ΣF
φ = ΣF

φ,θ=0,

Hence, ΣF
φ is more easily computed studying ΣF

φ,θ=0 with φ ∈ [−π
2 , π

2 ].

Consider now a frame {XYZ} obtained by rotating {xyz} (the {b} frame)
around z of the current φ pan angle. From Figure 4.14 and Figure 4.15 it is
clear that the ground visible field is the half-plane Y > g with g = l + f =
68.16.

Changing framework from {XOY } to {xOy} with a rotation of −φ, the
above relation is expressed as follows:

Y = −x sinφ + y cos φ > g (4.14)

Thus, (4.14) is the requested sufficient condition that guarantees that a
ground point P(x, y, 0) is visible from the image plane αφ,θ with respect to
focus point F for every admissible value of θ and φ.

4.2.4 Inverse-transformation: from pixels to real world ground
points

In the previous section we have analyzed how to convert a point from the
3D real world to the correspondent pixel into the image plane using the
calibration matrix. In this section we call F : Γ ⊂ ℜ3 7−→ ℜ2 the function
that executes this transformation, where Γ is the visibility region.
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Figure 4.14: Robot model with joint lengths and pan and tilt rotation cen-
ters, P and T respectively. Note that in this picture φ = 0

Y y

X

x O

g

φ

α

Figure 4.15: Top view of the ground. The shadowy region identifies the
ground visible points from the image plane α with pan φ and tilt θ ∈ [−π, 0].
{xOy} is aligned with {b} and {XOY} is aligned in such a way that X-axis
is parallel to α
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Horizon line

Figure 4.16: Horizon is the imaginary line that splits the image in two parts:
the lower with points that are projections of the ground and the upper with
points that are not.

We are also interested in knowing the inverse transformation of F , that
allows to convert a pixel of the image plane to the correspondent point in
the 3D world.

However, F is not an injective function, since an image plane point is
the projection of an infinite number of points in the 3D space. Thus, to be
able to compute F−1, we need to consider only ground points for reducing
the domain of F (we shall discuss this in the next subsection).

In the last two subsections, we first speak about image pixels that are
not projections of ground points, and finally, we describe the mathematical
procedure that allows to achieve the inverse transformation.

Injective property: ground plane assumption

The projection of a line l passing through the focus F is a single point P’,
i.e., P’ is the projection of all the points that belongs to l. The only way to
make F injective is to set a rule to choose unequivocally a point among all
the infinite points P of l.

In our case, the employed rule deals with the “ground plane assumption”,
that means that we consider only points that lie on the ground plane. This
implies that the domain of F is reduced from the visibility region Γ ⊂ ℜ3

to Λ.
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F
h

θ

α

β

Figure 4.17: Horizon line is the projection into the image plane α of a plane
β parallel to the ground and passing through the focus F

Horizon line

The “ground plane assumption” that we have used to make our transforma-
tion injective has a drawback: it makes F also non-surjective. Indeed, there
are points on the image plane that are not projection of any points on the
ground. See Figure 4.16, it shows a view of a landscape split in two por-
tions: the ground and the sky. We call in this work horizon the imaginary
separation line.

In the picture all the pixels above the horizon cannot be the projection of
a ground point, therefore in order to compute the inverse transformation, the
codomain of F must be reduced considering only points under the horizon
line.

The horizon line can be seen as the projection into the image plane of
the plane parallel to the ground passing through the focus point. In case
the image plane has pan angle φ = 0, the horizon is an horizontal line and
is computed easily. On the contrary, with a non-null pan angle, the way to
achieve the horizon equation requires further considerations.

Null pan angle The projection of an horizontal plane is an horizontal
line with equation in the image framework expressed as:

y = y0 + f tan θ (4.15)

where y0 is the y-coordinate of the image center, f is the focal length and
θ ∈ [−π, 0], see Figure 4.17.
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Non-null pan angle For a non-null pan angle we decide to achieve the
horizon line equation by mapping two ground points P1(x1, y1, 0) and P2(x2, y2, 0)
in two distinct image pixels.

P1 and P2 are projected into the horizon line only if their distances from
the robot reference is infinite. Provided that, under a perspective projection,
parallel lines converge to the same point on the horizon, we need to carry
P1 and P2 to infinity along lines with different direction.

A line laying on the ground and passing through the point (x0, y0, 0)
with direction v = (vx, vy, 0) can be described as the set of points

Pλ =









x0 + λvx

y0 + λvy

0
1









,

with λ between −∞ and ∞. The generic projection Iλ(u, v,w) of Pλ, ex-
pressed in homogeneous coordinates, is given by (Cf. Eq. 4.2):

Iλ = KPλ (4.16)

where K is the calibration matrix of the image plane.
Making (4.16) explicit, we obtain:







u = (x0 + λvx)K11 + (y0 + λvy)K12 + K14

v = (x0 + λvx)K21 + (y0 + λvy)K22 + K24

w = (x0 + λvx)K31 + (y0 + λvy)K32 + K34

(4.17)

where Kij is the element at ith-row and jth-column of K.
Expressing Iλ(U, V ) in non-homogeneous coordinate:











U =
(x0+λvx)K11+(y0+λvy)K12+K14

(x0+λvx)K31+(y0+λvy)K32+K34

V =
(x0+λvx)K21+(y0+λvy)K22+K24

(x0+λvx)K31+(y0+λvy)K32+K34

(4.18)

As λ → +∞, Eq. (4.18) becomes:
{

U =
vxK11+vyK12

vxK31+vyK32

V =
vxK21+vyK22

vxK31+vyK32

Iv
∞(U, V ) is called vanishing point associated with the family of straight

lines with direction v(vx, vy, 0) (Cf. [22]).
Now that we have a method to find out two different vanishing points,computing

the horizon line is a straightforward task.
Here there are two possible directions that are symmetric with respect

to the image plane normal:

v1(sin(φ + π
4 ), cos(φ + π

4 ), 0)
v2(sin(φ − π

4 ), cos(φ − π
4 ), 0)
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where φ is the pan angle of the image plane. We compute the corresponding
vanishing points Iv1

∞ , Iv2
∞ and the requested horizon passes through them.

Inverse transformation computation

The ground plane assumption and the horizon line introduced in the pre-
vious paragraphs have made the function F both injective and surjective,
hence we are able now to compute F−1.

Inverse transformation can be formulated starting from the intersection
between the Eq. (4.2) and the plane equation (Cf. [7]).

(4.2) can be rewritten as:

(u, v) =

(

(KX)1
(KX)3

,
(KX)2
(KX)3

)

(4.19)

where (u,v) is the projected point on the image plane expressed in pixels, K
is the calibration matrix and (KX)i is the i-element of the KX vector.

The 3D-point (x, y, z) that gives rise to the projection (u, v) can be found
by solving

[

(uK)3 − (K)1
(vK)3 − (K)2

]









x
y
z
1









=

[

0
0

]

(4.20)

where (K)i is the ith row of the K matrix.

Intersecting (4.20) with the ground plane equation Ax = 0 with A =
[0 0 1 0], we obtain:





K1 − uK3

K2 − vK3

A













x
y
z
1









=





0
0
0



 (4.21)

In a scalar form (4.21) becomes:

{

(K11 − uK31)x + (K12 − uK32)y + K14 − uK34 = 0
(K21 − vK31)x + (K22 − vK32)y + K24 − vK24 = 0

(4.22)

where Kij is the element at row i and column j of K.

(4.22) is a system of two equations with two unknowns x, y (u and v are
known).

In matrix form:

M

[

x
y

]

+ q = 0 (4.23)
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solvable inverting M matrix:
[

x
y

]

= −M−1q (4.24)

with

M =

[

K11 − uK31 K12 − uK32

K21 − vK31 K22 − vK32

]

and

q =

[

uK34 − K14

vK24 − K24

]

Note that M is invertible because we have assumed so far that F is bijective.
Concluding, eq. 4.24 gives the (x, y) position on the ground of the point

that corresponds to pixel (u, v) in the image.

4.3 Obstacle range computation: first method

In order to implement a robust system for the robot navigation in an un-
known space, we need to know where obstacles are located before being able
to plan and execute a path.

[16] has developed a technique, called visual sonar, to identify obstacle
position on the ground using a single image as input. We have adopted this
technique, extending it to manage a set of 6 images as input. This set of
images is taken with different pan/tilt angles such that approximately a field
of view of 180◦ horizontally and 90◦ vertically is covered (see Subsec. 3.2.3).

The main idea of visual sonar is to draw a set of scanlines in the image
that correspond to lines on the ground plane emanating from the origin of
an egocentric robot framework, i.e., the {b} frame. We use scanlines that
are spaced by 5◦ each other around the robot, because we consider it a rea-
sonable trade off between accuracy of obstacle locating and computational
load. We are also supported in our choice by the work of [16].

Each scan line is analyzed onto the segmented image (see Subsec. 4.1) for
searching a non-ground pixel, i.e., obstacle pixel. Once an obstacle is found,
its distance is computed through the calibration matrix of the camera (see
Sec. 4.2) and its angle, w.r.t. the local reference framework, is extrapolated
from the analyzed scan line.

In the next subsections, we explain, in a logical order, the procedure
that allows to find an obstacle distance starting from the related scan line
on the ground. In fact, we discuss how we map a ground scan line into a line
located in the image plane (4.3.1); how we extract the segment belonging to
the image rectangle from the related line lying onto the image plane (4.3.2);
how we actually represent this segment in pixels (4.3.3); how we find a pixel
representing an obstacle and how we compute its distance on the ground
(4.3.4); finally, we provide a motivation for the fact that we consider only
the first obstacle pixel found on a scan line into the image (4.3.5).
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Y

X
O

α

Figure 4.18: Origin O emanates a pencil of concentric scan lines spaced with
5 degrees. α angle is measured counter clockwise starting from x-axis.

4.3.1 Mapping a ground line to the image

We consider scanlines as a pencil of lines on the ground that must be mapped
onto the image plane. The center of the pencil is the reference point for the
dog, that in egocentric coordinate can be simply set to O = [0 0 0]T , the
{b} origin, (see Figure 4.18).

A line is uniquely identified by a vector and an application point. The
easiest application point that can be chosen is O because it is common to
all the scan lines, but it is not always visible for all pan and tilt angle of the
image plane (see 4.2.3). For this reason we need to choose a point enough
far from O such that it satisfies relation (4.14).

Once we know the first point P1(x1, y1) and the vector indicating the
line direction of the ith scan line:

vi =





cos(i∆α)
sin(i∆α)

0





with ∆α = 5◦, the second point is computed as P2 = P1 + γv1 (γ is a scale
factor big enough to avoid rounding errors with the transformation when
P1 and P2 are too close to each other). Both P1 and P2 are converted in
pixels on the image plane to P I

1 and P I
2 . It is not necessary that P I

1 and P I
2

belong to the image rectangle, because at the moment we are only interested
in tracing a line on the image plane that corresponds to a direction on the
ground.
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The scan line vector is obtained as follows:

vI = P I
2 − P I

1

4.3.2 Clipping the line into the image rectangle

The line found in the previous paragraph must be clipped to fit the image
rectangle. The aim of this section is to find the two endpoints of the clipped
line and to decide whether such segment is still suitable for our purpose or
we can discard it.

We have two possible cases:

• line intersects the rectangle image, then the found endpoints are used
to draw and track the scan line

• line does not intersect the rectangle image, hence it is useless to the
visual sonar technique and it can be discarded for the considered im-
age.

The clipping process finds for each side of the rectangle the intersection
with the line and it stops whenever it reaches 2 intersection points.

The algorithm needs to manage also singular cases, i.e., line passing
through vertexes as shown in Figure 4.19:

• only two coincident intersections, see Figure 4.19(b): the line is dis-
carded because it is outside the image;

• two coincident intersections and one isolated, see Figure 4.19(c): the
line is inside the image and it must be kept.

The found segment must be intersected again with the horizon line,
because we are interested only in points on the ground.

If the intersection with the horizon line is inside the image, the scan line
does not have to go beyond it. Figure 4.20(a) shows an example with the
intersection C between A and B. In this case AC is the segment of scan line.
On the contrary, if C does not belong to AB, we keep AB as scan line.

4.3.3 Representation of a segment into an image: DDA Al-
gorithm

Once we know the first and the last pixel in the image plane of the scan
line, we use the DDA (Digital Differential Analyzer) algorithm to find out
all the points of the line connecting them (Cf.[10]).

Let (xa, ya) and (xb, yb) be the endpoints of the line segment to be drawn.
Figure 4.21 shows that depending on the slope of a line, only one pixel must
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A

B

(a) 2 distinct intersections

A=B

(b) 2 coincident intersections

C

A=B

(c) 2 coincident and one isolated inter-
sections

Figure 4.19: The clipping window algorithm must manage the three kinds
of intersection of the line with the window
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A

h

B

C

(a) Intersection inside the image

A

B

C

h

(b) Intersection outside the image

Figure 4.20: The intersection between the scan line and the horizon h may
happen in two ways: inside the image (a) when C belongs to AB or outside
(b) when it does not. The resulting segment is AC in (a) and AB in (b).

be set per row or per column. If the absolute value of the line angular coef-
ficient is less than or equal to 1, then one pixel per column is set, otherwise
one pixel per row.

The first point to be set is (xa, ya), current x and y assume xa and ya

value. A new position of the line is found by adding a ∆x to x and ∆y to y.
The next point to be set is determined by rounding x and y to the nearest
integer. This process continues, using the values of x and y before rounding,
until the end point (xb, yb) is reached.

The increments are determined by first calculating the absolute value of
xb −xa and yb − ya. If |xb −xa| > |yb − ya|, then steps equal to 1 or -1 must
be taken in x-direction along the line, and steps equal to the slope of the
line, which is less than 1 in absolute value, must be taken in y-direction. In
case of a steeper line, steps equals to 1 are taken in y-direction and steps in
x-direction are small than 1 in absolute value.

An implementation of the algorithm follows:

void lineDDA(xa,ya,xb,yb){

int dx=xb-xa,dy=yb-ya,steps,k;

float x_increment,y_increment,x=xa,y=ya;

if (ABS(dx)>ABS(dy))

steps=ABS(dx);

else
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Figure 4.21: Line m has a slope > 1 and it is converted with 1 pixel set per
row, line n instead has a slope < 1 and then is converted with a pixel set
per column.

12 3

645

Figure 4.22: Sorting of the images that permits to satisfy relation 4.25

steps=ABS(dy);

x_increment=dx/step;

y_Increment=dy/step;

x[0]=ROUND(x);

y[0]=ROUND(y);

for(int k=1;k<steps;k++){

x ++= x_increments;

y ++= y_increments;

x[k]=ROUND(x);

y[y]=ROUND(y);

}

}
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4.3.4 Finding the first obstacle distance along each scan line

Each scan line onto the segmented image is inspected for searching the first
pixel that has not the same color of the ground (ground pixel are white and
non-ground pixel are black in the segmented image).

Before introducing the algorithm used for the extraction of the first ob-
stacle, is useful to formalize a notation for scanlines in the image plane.

A scan line is indicated with Sα, where α is the angle of the corresponding
ground line (see Fig. 4.18).

The portion of Sα that is included in image i ∈ [1, 6] is indicate with S i
α.

Each scan line Si
α is made of a sorted set of pixels indicated with S i

α(k)
and Si

α(0) is the first pixel of the scan line α mapped into image i.

The number of pixel N(Si
α) for each portion of scan line S i

α is not con-
stant. N(Si

α) = 0 means that Sα is not visible in image i.
The transformation of a pixel into the related ground point is performed

by function Gi, where i indicates that it uses the calibration matrix of the
i-image to perform the transformation, i.e., a particular combination of pan,
tilt angles.

Using the previous notation Gi(Si
α(k)) is the ground point corresponding

to the k-th pixel of the scan line portion with angle α belonging to ith −
image.

The set of images are sorted in such a way that, for each scan line Sα,
the following statement is true:

∀h∃k
(

k ∈ [0,N(Si
α) − 1] ∧ h ∈ [0,N(Sj

α) − 1] ∧ i < j
)

−→
‖Gi(Si

α(k))‖ < ‖Gj(Sj
α(h))‖

(4.25)

This means that if Gi(Si
α(k)) represents the distance of the closest ob-

stacle (w.r.t. the scan line origin) found on scan line α in image i, it is not
necessary to search for closer obstacles along α in any image j, with j > i.

The order of images that satisfies this statement is illustrated in Fig-
ure 4.22. It is easy to validate this order w.r.t. eq. 4.25 if you think at
the following example (see also Fig. 4.23). The scan line characterized by
α = 10◦, is always visible only in the lower and upper right tiles of the
mosaic image. If an obstacle is found along the portion of this scan line
contained in the lower tile, we can say that we will not find any other closer
obstacles in the scan line projected in upper tile. In fact, the upper tile
has been shot with an higher tilt angle and, for this reason, it cannot show,
along a scan line, an obstacle which has not been already detected along the
same scan line in the lower tile. Concluding, scan line α must be searched
for obstacle first in the lower right tile, and then in the upper right one.

In this way, in order to find the closest obstacle to the reference, the
vector

[

S1
αS2

α . . . S6
α

]

is scanned until an obstacle is found. This order allows
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Figure 4.23: Segmented mosaic image showing the projection of ground
scan lines that are 5◦ spaced. The thicker dashed scan line corresponds to
α = 10◦.

to optimize the searching of the closest obstacle along a scan line, avoiding
to consider all the images.

Once the first obstacle is found on the scan line S i
α, the pixel is anti-

converted into the ground point Pα = (x, y, 0),using the corresponding cali-
bration matrix related to the ith image. The distance of Pα to the reference
is

√

x2 + y2 and the angle is α.

On the other hand, if Sα is scanned until the last pixel of S6
α and there

are not found obstacles so far, we can state that there is not any obstacle
(visible to the robot) along α direction on the ground.

4.3.5 Scanning till the first obstacle pixel

We could find for each scan line, if eventually present, further obstacle pixels
beyond the first one, but a range computation for those pixels might lead
to errors.

In fact the range computation works correctly only for pixels representing
points on the ground plane. An elevated obstacle point would be seen further
than its actual position and the correspondent object to which the point
belongs, bigger than its actual size, see Figure 4.24(b).

We can state that the first obstacle pixel of a scan line is the projection
of a point that lies on the ground because of the continuity with adjacent
points.

Hence, in order to avoid committing range errors, we stop scanning the
line at the first obstacle pixel because it is the only one we are sure about
the correspondent ground point location.
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(a) Obstacle B is detected correctly
because it is on the ground
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F

B’

B

A

(b) Obstacle B is wrongly seen in
point B’

Figure 4.24: The visual sonar algorithm could find, if eventually present, a
further obstacle beyond the first one, but it would be an error to consider it
because we do not have any warranty that pixel is located on the ground.

4.4 Obstacle range computation: second method

Even if [16] refers to its obstacle range detection algorithm as visual sonar,
actually it is slightly different from the way how a sonar works. In fact, a
sonar, after having emitted a radiation cone, measures the distance of the
closest obstacle encountered within this cone. Whereas, visual sonar only
measures the closest obstacle range along a particular scan line. From this
point of view, it resembles more a laser range finder than a sonar.

In this section, we describe an alternative method to visual sonar that
draws inspiration from the real functioning of sonar. Subsec. 4.4.1 depicts
the algorithm, whereas Subsec. 4.4.2 makes a qualitative comparison be-
tween this method and previous one (see Sec. 4.3). An experimental com-
parison will be given in Sec. 7.3.

4.4.1 Algorithm description

As in the previous method, we ideally decompose the ground half-plane
visible to the robot into adjacent 5◦ wide angles. Each of these angles is
centered along one of the previous scan lines. The common vertex of all the
angles is still the origin of the egocentric frame, {b}. See Fig. 4.25.

We sequentially scan the obstacle pixels of each tile of the current mo-
saic image in order to compute their related position on the ground. This is
achieved applying to each pixel the inverse transformation F−1 (see Sec. 4.2.4).
Of course, we consider only “invertable” pixels, i.e., those lying below the
horizon line present in each tile.

Once an obstacle pixel has been “anti-projected” onto a ground point,
we are able to state to which angle this point belongs and we temporary
store the distance, w.r.t. the origin of {b}, of such a point only if it has
not been found another obstacle pixel whose associated ground point, in the
currently considered angle, has a shorter distance. In order to keep track of
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x

y

{b}

Figure 4.25: Obstacle range computation: second method. This figure shows
a top view of the ground with some obstacles (filled objects). The contin-
uous lines represent the sides of the angles, whereas the dash-dotted lines
represent the related bisectors that coincide with the scan lines of the visual
sonar method. Note that, for clarity of the picture, angles are drawn wider
than they actually are in the method. The small filled circles represent the
closest object points computed with this method, within each angle. The
dotted arcs represent ground points that are equidistant from the {b} origin.
These arcs can be considered as a sort of circular wave propagating from
the robot current position, and hitting the closest obstacles.
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the minimum distances, we need a number of variables that is equal to the
number of angles on the ground.

In this way, at the end of the sequential mosaic search, we obtain, for
each angle, the closest found obstacle, as it happens in the case of a ring of
sonar.

4.4.2 Comparison

This method is simpler than the previous one since it does not have to deal
with mapping of scan lines in the image plane, e.g., DDA algorithm is not
needed anymore. Furthermore, starting from a mosaic image, it allows to
“extract” more information about ground obstacles since it analyzes all the
pixels and not only those lying on the projected scan lines.

There is also a price to be paid: the computational complexity. In fact,
if you assume that a scan line is projected into a mosaic tile with a number
of pixels that is proportional to the square root of the tile image size, i.e.,
width×height, (for instance, Fig. 4.23 shows that a scan line contained in a
tile can be either compared to the width or length of the tile, depending on
the scan line angle), the complexity of the previous method is proportional
both to such a square root and to the number of scan lines. Whereas, the
complexity of the second method is clearly proportional to the size of the
tile image. However, it should be noted that if the number of scan lines
increases, i.e., if they are less spaced, the complexity of the first method
tends to that of the second one.



Chapter 5

Navigation

In this chapter, we speak about representing (5.1), reasoning (5.2), and
acting in the environment space, for our navigation purposes. In fact, we
discuss the internal environmental representation of our robot (Section 5.1),
the way how it plans an obstacle-free path on this representation (5.2), and,
finally, we describe how this path is actually mapped into commands for the
robot actuator unit (5.3).

5.1 Occupancy Grid

Once we are able to compute obstacle distances, next step is organizing these
information such that we can obtain a robot’s environment representation
that is required for establishing which parts of the environment are free for
navigation.

The most natural representation of a robot’s environment is a map. In
addition to representing places in an environment, a map may include other
information, including regions that are unsafe or difficult to traverse, or
information of prior experiences. In general spatial representation can be
divided into two main groups: those that rely primarily on an underlying
metric representation and those that are topological (Cf. [7]). In our case, a
metric representation is more suitable since we deal with obstacle distance
measures.

Perhaps the most straightforward representation of space is to sample
discretely the two-dimensional environment, that consists of a planar ground
in this thesis. A method to do this is sampling space at the cells of a uniform
grid. Samples taken at points in the lattice express the degree of occupancy
at that sample point: is space empty, full, or partially full? These kind of
2D grids are known as occupancy grids (Cf. [7]) and this is what we actually
employ.

The problem of building an occupancy map from distance measures is
made difficult by the uncertainty introduced by the sensing process. Due to

75
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the inherent limitations of our visual sensor (see Subsection 5.1.1), it is not
always possible to decide whether or not a given point in the workspace is
occupied by an obstacle. Rather than deciding, a more reliable approach is
to convey all the available knowledge into an uncertain representation. In
literature there are some methods to deal with uncertainty, e.g., probabil-
ity theory, Dempster-Shafer theory, but some studies (e.g., Cf. [21]) clearly
indicate that, with respect to other methodologies, fuzzy logic provides a
more robust and efficient tool for managing the uncertainty introduced by
the ultrasonic and laser-based sensing processes that are “similar” to our
“visual sensor” to some extent (See Subsec. 5.1.1). In this way, each grid
cell can be labeled as empty, occupied, indeterminate (unexplored), or am-
biguous(giving a discordant information over several measures). The rep-
resentation of these concepts, their quantification and the construction of
suitable uncertainty models are very natural and straightforward in a fuzzy
logic framework whereas techniques based on probability theory essentially
do not discriminate between indeterminate and ambiguous cells; moreover,
their computational load is generally higher [8].

Our navigation system exploits an existing code (Cf. [25]), designed for
sonar sensors, that implements a fuzzy occupancy grid.

5.1.1 Employed technique: Fuzzy Logic

The above cited code defines the empty and the occupied spaces by two
fuzzy sets E and O over the universal set U (the environment), assumed to
be a bitmap, i.e., a two-dimensional subset of ℜ2 discretized in square cells
of a given size. The corresponding membership function µE(C) and µO(C)
quantify the degree of belief that the cell C ∈ U is empty or occupied,
respectively, as computed on the basis of the available measures.

In the fuzzy logic context, the two sets E and O are not complementary.
Thus, for a given cell C, µE(C) and µO(C) convey independent information.
This situation is particularly convenient in view of the peculiar characteris-
tics of the range sensing process. In fact, any distance measure refers to the
closest obstacle along a particular scan line (see Sec. 4.3) or within an angle
centered on a particular scan line (see Sec. 4.4), thereby indicating the pres-
ence of an empty space up to a certain distance. No information is provided
about the state of the area beyond such distance: the available evidence does
not suggest neither emptiness nor occupancy. Only incorporating measures
taken at different viewpoints it will be possible to discriminate between the
two possibilities. A further advantage of the use of fuzzy logic is that the two
basic sets E and O can be combined in various ways to identify conflicting
or insufficient data.

The map is built by calling the function GmFuseRange (Cf. [25]) whenever
a distance measure is available. The function parameters are:

• a reference to the E and O sets;
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• the coordinate (in mm) of the observation point (ObsPoint), i.e, the
origin of the scan lines, expressed in the occupancy map framework;

• the range r, w.r.t. the scan lines origin, and bearing theta, w.r.t.
to a local observation point frame oriented like the occupancy map
framework, of the detected obstacle. In the case of visual sonar, theta
refers to the particular scan line hitting the obstacle, as depicted in
Fig. 5.1. Whereas, considering the second obstacle detection method
(see Sec. 4.4), theta identifies the bisector of the angle within which
the measure has been read.

See Fig. 5.1 for a representation of the above parameters.

Given the i-th distance measure (i = 1, 2, ...), GmFuseRange essentially
performs the following operations:

1. generating a local representation (w.r.t. the current observation point)
of the empty and the occupied space, i.e, two local fuzzy sets Ei and
Oi. These take in account what is usually called sensor model, i.e.,
the uncertainty model of the visual sensor.

2. fusing the previous local information into the global representation of
the empty and the occupied space, which is contained in E and O.

We are going to discuss the above phases in next two subsections.

Sensor model

The performance of the visual sensor may be affected by various phenomena:

1. the whole segmentation process may alterate the location of an obsta-
cle inside an image. This is due, for instance, to misclassified pixels or
pixels filtered out by the final erosion.

2. imprecise knowledge about the calibration matrix, e.g., imprecise move-
ments of the robot head joints, lens distorsion;

3. impossibility to state the exact location of a ground point, starting
from the related pixel in an image, because of the intrinsic finite res-
olution of the image itself.

Another strong uncertainty source arises from the imprecise knowledge
of the current robot position inside the grid map, and consequently of the
observation point of a certain distance measure. This kind of uncertainty
cannot be strictly incorporated in the sensor model because it does not affect
directly an obstacle distance observed from the current scan line origin, but
it deeply affects the location of that obstacle in the occupancy grid since it in-
fluences the observation point provided to the above discussed GmFuseRange
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Occupancy map

{Occupancy map frame}
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r

ObsPoint
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theta

Figure 5.1: Occupancy map framework {X,Y} and parameters needed to call
GmFuseRange. The dotted lines represent the scan lines “emanated” from
ObsPoint. One of them is hitting an obstacle (small circle) at distance r

and angle theta, w.r.t. to the local observation point frame {X’,Y’}. theta
is easily computed since we know the angle of the hitting scan line w.r.t.
to current robot heading (drawn with a dash-dot line), which is also known
through the self-localization process (see Ch. 6).
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function. Moreover, this uncertainty has a similar nature to the one that
characterizes the distance measures (excluding the segmentation uncertainty
source) because the self-localization, which is responsible of providing the
current observation point, is based on a visual process exploiting the cali-
bration matrix as well (see Chapter 6). Finally, even if this self-localization
uncertainty is not directly modelled, the general fuzzy framework we use,
may take it in account somehow.

In the remainder we introduce a basic uncertainty model (implemented
in [25]) that associates to the i-th range measure ri a prototypical represen-
tation of the empty and occupied space in the “radiation cone”, i.e., Ei and
Oi respectively. This model is usually employed with ultrasonic and laser
sensors and, in this situation, the term radiation cone has a clear physical
meaning. In our case, the radiation cone embodies the angular uncertainty
related to ri and we consider it as 5◦ wide. In the case of the second method
of obstacle detection, this choice is motivated by the fact the such method
only provides, as output, a measure of the closest obstacle within a certain
5◦ wide angle. In the visual sonar case, this choice is motivated by the inac-
curacy related to the difference between a real ground scan line, for instance
characterized by angle α, and the “anti-projection” of the scan line α lying
into the image plane. Experimental evidence (see Sec 7.3) has shown that
such difference can be roughly modeled through an angular uncertainty of
approximately 5◦ .

A range reading ri indicates that an obstacle is located somewhere along
the arc of circumference of width w = 5◦ and radius ri centered at the local
origin of scan lines. Points located in the proximity of this arc are likely
to be occupied, while there is evidence that points well inside the circular
sector of radius ri are empty.

To model this uncertain information, we introduce the two functions

fEi
(ρ; ri) =







kE

kE · ri−ρ
∆r

0

0 ≤ ρ < ri − ∆r
ri − ∆r ≤ ρ < ri

ρ ≥ ri

fOi
(ρ; ri) =











0

kO ·
(

1 − |ri−ρ|
∆r

)

0

0 ≤ ρ < ri − ∆r
ri − ∆r ≤ ρ < ri + ∆r
ρ ≥ ri + ∆r

that describe, respectively, how the degree of belief of the assertions “empty”
and “occupied” vary with the distance ρ from the sensor, for a range reading
ri. Here, kE and and kO are two positive constants corresponding to the
maximum values attained by the functions, 2 · ∆r is the stretch of the area
considered “proximal” to the arc of radius ri. The profile of fEi

and fOi
is

displayed in Fig. 5.2.

The degree of belief of each assertion is assumed to be higher for points
close to the scan line axis because the measure ri has been read on that
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Figure 5.2: The two uncertainty functions fEi
and fOi

for a range reading
ri.
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axis in the case of visual sonar method. Whereas, in the case of the second
method, this results to be an empirical choice. As a consequence, points at
the borders of the “5◦-wide radiation cone”, are expected to have a lower
degree of belief. This is realized by defining a local modulation function

m(θ) =

{

2.5◦−|θ|
2.5◦ |θ| ≤ 2.5◦

0 |θ| > 2.5◦

where θ = 0 identifies the scan line related to ri (see Fig. 5.3).

0

1

−2.5◦ 0 2.5◦

m(θ)

θ

Figure 5.3: The modulation function.

Finally, we wish to limit the influence of the range reading ri to an area
close to scan line origin location. In particular, by defining the visibility
function

v(ρ) =

{

1 ρ ≤ ρv

0 ρ > ρv

the degree of belief of the assertions “empty” and “occupied” is nonzero only
inside a circular sector of radius ρv centered at the scan line origin. We usu-
ally consider ρv = 1.5m because observed distances longer than 1.5-2 m are
often quite imprecise. This is due to the increasing loss of radial resolution
of pixels along a scan line, i.e., the further (from the image projection of
the scan line origin) are any two adjacent pixels belonging to the same scan
line, the bigger is the distance between the two ground points corresponding
to the previous pixels. This is an effect of the perspective transformation
involved in the calibration matrix (see 4.2).

We can now define the two fuzzy sets Ei and Oi through their member-
ship functions

µEi
(ρ, θ) = fEi

(ρ; ri)m(θ)v(ρ)

µOi
(ρ, θ) = fOi

(ρ; ri)m(θ)v(ρ)
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i.e., by and-ing the previously introduced certainty functions. These sets
represent, respectively, how the degrees of belief of the assertions “empty”
and “occupied” vary inside the radiation cone. Note that the above mem-
bership functions are expressed in local polar coordinates with respect to the
scan line origin position, and assume nonzero values only inside the subset
of the “radiation cone” within the visibility radius.

Fusion

The task of the fusion phase is to integrate the local information contained
in Ei and Oi into the global fuzzy sets E and O of empty and occupied
points.

This can be performed using a fuzzy aggregation operator in order to
update respectively E and O with Ei and Oi:

E := E ∪ Ei

O := O ∪ Oi.

[25] implements “∪” through the Lukasievic T-conorm

µA∪B(x) = min(1, µA(x) + µB(x)). (5.1)

Regarding the implementation efficiency, it should be noted that since
µOi

(C) and µEi
(C) (where C is an occupancy grid cell) are nonzero only

inside a circle of radius ρv centered at the current scan line origin, it is
necessary to update E and O only in the same area.

5.2 Path Planning

Path planning is concerned with the problem of moving the robot from an
initial position to a goal position, possibly avoiding obstacles and considering
the minimum length path. Path planning algorithms can be classified as
either global or local. Ours is global because it takes in account all the
information in the environment when finding a route. In fact, it operates
on the whole occupancy grid by first building a fuzzy occupancy map Mp

suitable for planning purposes and finally applying the A* algorithm on Mp.

5.2.1 Building the planning map

A fuzzy logic framework presents the advantage of allowing the detection of
conflicting or insufficient information. In fact, since E and O are not com-
plementary (see 5.1.1), their intersection is the fuzzy set, A, of ambiguous
cells, with the corresponding membership value representing the degree of
contradiction. Here is the definition of A:

A = E ∩ O.
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Similarly, the fuzzy set of indeterminate cells can be defined as

I = Ē ∩ Ō.

A conservative map Sp of the safe-for-planning cells is obtained by
“subtracting” the occupied, the ambiguous cells from the empty ones and
“adding” to this intermediate result the indeterminate cells

Sp = E ∩ Ō ∩ Ā ∪ I (5.2)

and the planning map Mp, i.e., the map that will be considered by the
planning algorithm, is

Mp = S̄p.

The indeterminate cells are regarded as safe because, in order to reach a
given goal, the robot will have to traverse regions that are indeterminate at
the beginning of the motion (the environment is a priori unknown). Thus,
the planner must be allowed to propose a path going through such regions.

For the above computations we use the following operator:

• µĀ(x) = 1 − µA(x);

• µA∩B = max(0, µA(x) + µB(x) − 1), that is the Lukasievic T-norm;

• for the “∪” we employ the Lukasievic T-conorm, see equation 5.1.

In our implementation the sets of cells so far described (indeterminate,
ambiguous, etc.) do not correspond to actual data structures that are stored
during the occupancy grid building process. In fact, Mp is directly computed
from the fuzzy sets E and O by developing the various terms in 5.2.

5.2.2 Planning algorithm

During the planning phase, a path P is produced from the current robot
position (corresponding to the starting cell S) to the goal G by applying a
graph search algorithm aimed at minimizing the risk along the path and its
length. Note that a path P , in our case, is defined as a sequence of adjacent
cells S, ..., G and we use the notion of 4-connectivity to define the concept
of adjacency. The fuzzy map Mp is used in this step.

A natural planning strategy is to avoid areas of Mp where the risk of
collision is high, that are identified by cells with large values of µMp . This
may be achieved by defining a proper cost function for a path P , and then
searching for minimum-cost paths. We first consider the case of a point
robot; this assumption will be removed later.

We use an intuitive cost function, defined as

g(P ) =
∑

Ci∈P

µMp(Ci),
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that is a measure of the integral risk along the path.

As a planning method, we have adopted the A* algorithm, which allows
to incorporate heuristic information when available, resulting in an efficient
search. We shall not recall here the details of the algorithm, that are well
known (Cf. [22]).

To apply A*, we need as a basic tool a heuristic function h(C) estimating
the cost of the optimal path from the generic cell C to the goal G. A* will
be complete under the admissibility condition

0 ≤ h(C) ≤ h∗(C), ∀C

where h∗(C) is the actual cost of the minimum-cost path from C to G.
Moreover, the heuristic function h(·) is said to be locally consistent if, for
any pair of adjacent cells (Ci, Cj), we have

0 ≤ h(Ci) ≤ h(Cj) + w(Ci, Cj)

being w(Ci, Cj) the cost of the arc between Ci and Cj. Under this assump-
tion, whenever Ci is expanded during the algorithm visit, the current path
from S to Ci is already optimal. The choice h(·) ≡ 0 is trivially admissible
and locally consistent, resulting however in a non-informed algorithm.

The use of A* to generate paths minimizing g on the fuzzy map Mp

is immediate. The cost of the arc joining two adjacent cells Ci and Cj is
defined as

w(Ci, Cj) = µMp(Cj)

so that the cost of a path P coincides with g(P ), except for the additive
constant µMp(S). As for the heuristic function, we use

h(Cj) = d(Cj) · µmin
Mp

(5.3)

in which d(Cj) is the minimum number of cells that compose a subpath
from Cj to G, and µmin

Mp
is the smallest value of µMp over Mp. The heuris-

tic function 5.3 is clearly admissible and locally consistent. There are two
remarks:

• in our 4-connectivity map, d(Cj) = |xG − xj | + |yG − yj|, that is the
so called Manhattan distance;

• to obtain an informed A*, it must be µmin
Mp

> 0. Hence, we initialize
all values of µMp with a small positive constant.

In order to obtain a safer path, we have chosen to perform an α− cut of
µMp . That is, only cells belonging to the (crisp) subset

Mα
p = {C ∈ U : µMp ≤ α}
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are considered admissible for planning. By choosing an appropriate value
for α, we can obtain a reasonable trade-off between the integral and the
maximum risk.

Last remark concerns removing the point robot assumption so far adopted.
Assume that the robot can be approximated by a circle of radius γ (in our
case γ = 298/2 since 298 mm is the biggest robot dimension, i.e., the length
of the dog, Cf. [30]), whose center is located at (the center of) cell C. Since
each occupancy grid has side δ (δ < γ, we usually consider δ = 100 mm),
the robot body will be contained in a square of η × η centered at C, being
η = 2 · round(γ/δ)+ 1, with round(x) the nearest integer to x (for instance,
δ = 100 mm implies η = 3 cells). Hence, we can build an augmented map
Ma

p by defining µMa
p

as the maximum value of µMp attained in the square of
η × η cells centered at C. Planning for a point in M a

p is equivalent to plan-
ning for the actual robot in Mp. To cope with this assumption removal, it
is sufficient to modify A* so as to compute µMa

p
(C) only when C is actually

visited.

5.3 Path Following

Path following deals with the actual execution of the trajectory given by
the path planning module. This results in managing the physical velocity
commands to be sent to the robot, odometric information received from
the robot and keeping track of robot position in the map. We assume that
the environment does not change during the execution of a path, i.e., the
obstacles are static, so we do not handle map variations once a route has
been established.

5.3.1 Way-points technique

Path planning produces a 4-connected trajectory often consisting of several
small δ-size cells (we often set δ = 100 mm). Selecting some significant
cells from this trajectory, can decompose and thus ease the path following
problem, in fact it is reduced to a series of go-to-position problem where the
position is one of the extracted cells. We chose to consider only the cells
where a 90◦ trajectory change takes place (see Fig. 5.4). In this way we avoid
to apply the go-to-position procedure to intermediate points of a segment
belonging to the trajectory, in fact it would be useless since go-to-position
stops temporary the robot when the current position is reached.

5.3.2 Feedback loop

The above mentioned go-to-position problem can be solved with a feedback
control loop: see Fig. 5.5 and the following paragraphs for a detailed expla-
nation of the diagram blocks.
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Figure 5.4: Fuzzy occupancy map showing a planned path (dotted line)
starting from an initial position (big circle), and the related way-points
(small circles). The latter ones corresponds to the cells where a 90◦ trajec-
tory change takes place.

Controller

System

Error

System output System input

Reference value: goal position

Figure 5.5: Feedback control loop
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System input

We use only two of the three available velocity components (See 3.2.2) as
system input :

• rotational velocity

• linear velocity

In fact, we do not need lateral velocity to carry out the go-to-position pro-
cedure (See 5.3.2). Moreover these two components are sent separately to
the dog so that a motion command can exclusively be a linear movement
along the current dog heading or a pure rotation. This is due to the nature
of the controller algorithm (5.3.2) and to the fact that the Locomotion Unit

(3.2.2) makes the dog walk more imprecisely when the speed components
are mixed together in a single command.

System output

This is the current robot position and heading and their are obtained by
integrating the velocities that are continuously provided by the robot (See
3.2.2). Integration starts from an initial position and heading that are con-
tained in Estimated Robot Position (Fig. 3.2), i.e., the position and heading
computed when Visual Self Localization has been invoked last time. Veloc-
ities received from the dog are not very accurate because they are simply
obtained multiplying the previous velocity commands by a kind of constant
slippery factor, see Sec. 3.2.2

Controller

The controller embodies the go-to-position routine, where position is a 2D
point of the free ground. Thus, this is a two-dimensional problem but it can
easily be divided in two one-dimensional problems:

• first the robot heading is corrected modifying rotational velocity in
order to make the dog head the goal position;

• then the distance between the current position and goal is corrected
through the linear velocity.

These sub-problems are achieved with two proportional controllers and the
overall strategy is the following (See also fig.5.6):

global variables: x, y, theta

parameters : ROT_GAIN, LIN_GAIN, DELTA_TH, DELTA_POS

procedure go-to-position(xg,yg)



88 CHAPTER 5. NAVIGATION

repeat

compute current robot position(x,y,theta)

compute distances to goal(dx,dy)

convert (dx,dy) to errors (theta_err, pos_err)

if |theta_err > DELTA_TH|

/* not heading the target: compensate theta */

v_rot = ROT_GAIN*theta_err

else

/* heading to target: compensate position */

v_lin = LIN_GAIN*pos_err

send velocities (v_rot, v_lin) to robot

pause some time

until |pos_err < DELTA_POS|

send velocities (0,0) to robot

pos_err

theta_err

xg

yg

theta

x

y

X

Y

Figure 5.6: go-to-position problem

compute current robot position integrates the last velocities received
by the robot over a period that is the time elapsed since compute current

robot position has been called last time. This results in a cumulative
position error (as previously said, velocity information considered in the
“system output” block are imprecise).

Proportional control The heart of proportional control are the two
gains: ROT GAIN and LIN GAIN. They affect the behaviour of the whole con-
trol system, therefore their tuning is crucial:

• if LIN GAIN is too high the robot will not reach directly the goal but
it will go back and forth around the goal;

• if ROT GAIN is too high the robot heading will oscillate around the goal
heading.
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On the other hand, if the gains are too low the control system will be slow
in following the reference value. We found that a reasonable trade-off can
be obtained with:

• LIN GAIN = 0.2;

• ROT GAIN = 2.

Output saturation The control we implement is not purely proportional
because a output value saturation is also applied before sending the velocities
to the dog. The main reasons for this further step are:

1. linear and rotational velocities obey a constraint concerning their max-
imum values after those the robot cannot accomplish the requested
speeds anymore because of mechanical limitations;

2. linear velocity should be higher than a certain threshold because oth-
erwise the robot could not execute any movements due to the friction
with the ground. This would make the robot more imprecise in reach-
ing a certain point, e.g. the odometry could state that the dog is
moving even by a small speed whereas it is stuck on the ground be-
cause of the friction. This minimum value of course depends on the
particular ground features.
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Chapter 6

Self-localization

In this chapter, we describe the visual self-localization process that allows to
infer the current robot position and orientation in the environment, starting
from different mosaic images taken by the robot.

As already said in the previous chapters, the robot itself provides con-
tinuously a measure of its current linear and rotational velocity. If these
measures were enough accurate we would estimate the current robot posi-
tion and orientation only through a simple mathematical integration, but,
the fact that they are very imprecise (see Subsec. 3.2.2), leads to the need
of a further procedure for better determining the robot location. Since the
principal robot sensor employed in this work is the visual one, we decide
to exploit the mosaic images captured from the environment to achieve this
task.

Our visual self-localization is a differential procedure, that is, it provides
the current robot location by computing the change of robot position and
orientation since the visual self-localization has been performed last time.
For this reason, it needs the current mosaic picture and the second-last
one that has been taken. This change is carried out on the base of the
correspondence among image features extracted in the old and recent mosaic
images, which have been taken, respectively, at time to and tr, with to < tr.
Fig. 6.1 shows a diagram describing this procedure.

Actually, our visual self-localization process cannot cope with the loca-
tion estimation problem without the help of the velocity information received
from the robot, even if these are quite inaccurate. In fact, our visual self-
localization employs the mosaic image as basic input for its computations,
and this limits the rate at which the visual self-localization can be executed,
because it takes a certain time for the robot to shoot the six pictures com-
posing the mosaic and send them to the host (approximately, 10 seconds).
For this reason, our visual self-localization can be only a time-discrete pro-
cedure and we decide to perform it at each way-point of the planned path
(see Subsec. 5.3.1). However, in order to follow a given planned path (see
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Acquire mosaic image r

at time tr

Find features in r

Find corresponding features in

mosaic image o related to time to

Compute change of pose

between to and tr

Figure 6.1: Diagram describing the main steps of our visual self-localization
procedure.
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Sec. 5.3), there must be a kind of feedback concerning the current robot loco-
motion, even between any two consequent “calls” of visual self-localization.
To achieve this, we employ the velocity information received from the robot
for estimating its location between any two adjacent way-points (see Sub-
sec. 5.3.2).

In section 6.1, we describe the computation of the difference of robot
position and orientation, given two pairs of mosaic image features. In the
last sections, we discuss two solutions for selecting and finding corresponding
features in the two mosaics: one method is manual (Sec. 6.2), and the other
one is automatic (Sec. 6.3).

6.1 Relative pose estimation

In this section, we explain how it is possible to estimate the change in po-
sition (also called displacement) and orientation of the robot, starting from
two pairs of mosaic image pixels. The first pair represents two features
belonging to objects lying on the ground and projected into a mosaic im-
age taken at time t = to. Whereas, the second pair represents the same
features, i.e., the same ground objects, projected in another more recent
mosaic image, shot at t = tr, with to < tr.

We require that these features correspond to non-elevated points of ob-
jects lying on the ground, e.g., corners of a paper lying on the ground. We
refer to those points as landmarks (see Sec. 2.4). This assumption allows
us to determine the locations of the landmarks w.r.t. the egocentric frame
related either to the mosaic image at t = to or t = tr (see Subsec. 4.2.4),
and, in turn, to apply triangulation techniques (see Sec. 2.4) for estimating
the change of the robot pose. Fig. 6.2 gives an example of two pairs of
corresponding features in the old and recent mosaic.

Let (u1, v1)
i
o and (u2, v2)

j
o be the coordinates of the pixels representing

the two landmarks L1 and L2. These pixels belong, respectively, to tile i and
j (i, j ∈ [1..6], see Fig. 3.4) of the old mosaic o. Similarly, we have (u1, v1)

m
r

and (u2, v2)
n
r for the same landmarks in tiles m and n of the recent mosaic

r.

6.1.1 Displacement computation

Starting from (u1, v1)
m
r and (u2, v2)

n
r , Eq. 4.24 allows to find the distances

d1 and d2 of the two landmarks on the ground from the current location of
the robot, i.e., from the origin of the egocentric frame {br} related to mosaic
r (for the egocentric frame we use the same conventions as in Sec. 4.2). In
fact, m and n identify two particular combinations of pan and tilt angles
(see Subsec. 3.2.3) that determine the two calibration matrices Km and Kn

to be used in Eq. 4.24 for getting d1 and d2, respectively. Using a notation
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(a) A pair of features related to points be loging to objects on the ground. The arrow
with the filled head refers to the first feature, which belongs to the big ball on the
ground. Whereas, the arrow with the empty head refers to the second feature which
is associated with the soccer ball.

(b) The corresponding pair of features in the recent mosaic. Note that, in the mean-
while, the robot has approached the soccer ball.

Figure 6.2: Example of corresponding features. (a) is the old mosaic image,
whereas (b) is the recent one.
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similar to the one adopted in Subsec. 4.2.4, we have

d1 = ‖F−1
Km

(u1, v1)‖

d2 = ‖F−1
Kn

(u1, v1)‖.

With the same procedure, we can obtain L
{bo}
1 and L

{bo}
2 , that are, re-

spectively, the positions on the ground of landmarks L1 and L2, w.r.t. the
old location of the robot, i.e., w.r.t. the egocentric frame {bo} related to
mosaic o. More precisely, starting from (u1, v1)

i
o and (u2, v2)

j
o, we have:

L
{bo}
1 = F−1

Ki
(u1, v1)

L
{bo}
2 = F−1

Kj
(u2, v2).

Now we can individuate two circles, Γ1 and Γ2 (see Fig. 6.3(a)), which

are centered, respectively, in L
{bo}
1 and L

{bo}
2 , and with radius d1 and d2.

The intersection points, P
{bo}
1 and P

{bo}
2 , between these circles represent the

possible estimations of the robot position at time tr, w.r.t. {bo}. In fact,
provided that the robot has observed, at time tr, a distance d1 to landmark
L1 and d2 to landmark L2, it must be on points belonging to both the
above circles, i.e., on one of the two intersections. More formally, the two
intersections represent the possible origins of {br} w.r.t. {bo}.

Once we have found the two possible relative robot locations, we must
discriminate between them. Look at Fig. 6.3(a): provided that both land-
marks L1 and L2 are visible in mosaic r (note that “L1” and “L2” are simple
labels that we “attach”, respectively, to the first and second feature provided
in input to the relative pose estimation procedure) and that the mosaic has
an horizontal field of view of approximately 180◦ (see Subsec. 3.2.3), if the
robot were in P1 it would “see” L1 on the left w.r.t. L2 (note that the robot
heading coincides with the y-axis); viceversa, if it were in P2 it would “see”
L1 on the right w.r.t. L2. Thus, if we encode somehow the angular informa-
tion “from P , L1 is seen either on the left or on the right w.r.t. L2”, with
P ∈ {P1, P2}, we can then discriminate between P1 and P2, since we can
observe this information from the real location of the robot. The previous

angular information is encoded in the following way: starting from L
{bo}
1 ,

L
{bo}
2 , and P {bo} we compute the angle L̂1PL2 which is measured clockwise

from L1 to L2 and then normalized in [−180◦, 180◦]. If L̂1PL2 is positive
then L1 is seen, from P , on the left w.r.t. L2 (this case happens in Fig. 6.3(a)

when P = P1), whereas if L̂1PL2 is negative then L1 is seen, from P , on the
right w.r.t. L2 (this case happens in Fig. 6.3(a) when P = P2). Moreover,
it can be easily demonstrated, just looking at Fig. 6.3(a), that the following
relation is always true:

L̂1P1L2 = −L̂1P2L2.
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x

x

y

y
{bo}

{br}

L1

L2

P1

P2d1

d2

Γ1

Γ2

(a) Triangulation problem framework. Landmarks
L1 and L2 are observed from the egocentric frames
{bo} and {br}. These observations allow to build Γ1

and Γ2, and to estimate the current robot position in
frame {bo}, i.e., the origin of {br}, that could be ei-
ther P1 or P2. The last two points are discriminated

using the angle L̂1L2 observed in {br}.

x

x

y

y

{bo}

{br}

∆θ

L1
P2

v

α
β

(b) Rotation computation. v is the displace-
ment vector (in this case P2 is the robot po-
sition), whereas the change in rotation, ∆θ,
between {br} and {bo}, is computed as the
difference between β and α. Note that {br}
and {bo} are drawn with thicker lines.

Figure 6.3: Relative pose estimation. (a) shows the framework of an instance
of our triangulation problem, whereas (b) focuses on the computation of
robot rotation.
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In order to discriminate, we finally measure the real observed angle be-
tween L1 and L2, L̂1L2, as the [−180◦, 180◦] normalization of

φ
(

L
{br}
1

)

− φ
(

L
{br}
2

)

,

where φ
(

Q{f}
)

indicates the angle related to vector Q expressed in frame
{f}, measured in the usual counter-clockwise convention. From what has
been explained so far, the real robot location is P1 if

sgn
(

L̂1L2

)

= sgn
(

L̂1P1L2

)

,

otherwise it is P2. Note that sgn (·) is the function sign.
Finally, there is an important case to consider: when the two circles Γ1

and Γ2 do not intersect. This could happen when P
{bo}
1 , P

{bo}
2 , d1, and d2 are

estimated in such a wrong way that leads to one of the following situations
characterized by Γ1 ∩ Γ2 = ∅ :

• Γ1 contains Γ2 or viceversa;

• Γ1 is outside Γ2.

These errors are due to the impossibility of selecting and finding exactly the
same corresponding features in both the mosaics, and inaccuracies in the
calibration matrix. Anyway, when Γ1 ∩ Γ2 = ∅ we cannot apply the above
triangulation technique and we decide to estimate the robot displacement
and rotation by simply integrating the current velocities provided by the
robot.

6.1.2 Rotation computation

Once the robot displacement, v, between to and tr, has been found, we still
have to find out the change in rotation ∆θ, i.e., the rotation that allows
{bo} to have the same orientation as {br}. This can be easily computed for
instance in the following way (refer to Fig. 6.3(b)):

∆θ = β − α

where β = φ
(

(L1 − v){bo}
)

and α = φ
(

L
{br}
1

)

. Note that v = P2 in the

figure.

6.2 Operator-based feature selection and match-

ing

In order to select corresponding features to be “sent” as input to the relative
pose estimation procedure (see Sec. 6.1), we implemented, as first approach
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to the problem, a trivial solution that requires the operator to select (via
mouse) two pairs of corresponding features in the old and recent mosaic im-
ages, which are displayed at each way-point. Fig. 6.2 is actually a screedump
of our system that show the windows presented to the operator (the arrows
has been added for highlighting a possible choice of corresponding features).

6.3 Artificial-landmark-based automatic solution

In this section we present an automatic approach for selecting and find-
ing corresponding features that will be used by the procedure explained in
Sec. 6.1 for estimating the robot egomotion.

This approach is based on the following assumptions:

• in the environment there are N a-priori known convex objects, i.e., N
artificial landmarks, but their locations is unknown;

• each of these landmarks is univocally determined by a different known
color, which is coded through four thresholds (see Subsec.4.1.1);

• landmarks lie on the ground and they are flat. Moreover, they have
such a size that allows to state that they will be made of at least k
pixels, when projected in a mosaic image.

The method is divided in two parts: in the first one (Subsec. 6.3.1), we
find the artificial landmarks present in mosaic o and r; in the second one
(Subsec. 6.3.2), we look for corresponding landmarks found in mosaic o and
r.

6.3.1 Landmark selection

In this subsection, we describe the procedure that allows to find the arti-
ficial landmarks in a mosaic image. This procedure must be applied once
for mosaic o, and another time for mosaic r. The output of this procedure
is a list l containing, for each of the N landmark color classes, the related
“candidate” features eventually found in the mosaic. We speak about “can-
didates” because there can be more than one feature associated with a given
landmark color class. This can be due, for instance, to false positives present
in the environment. Each “candidate” is specified through the coordinates
of a representative pixel (a sort of centroid which always corresponds to a
landmark ground point, since landmarks are flat and convex), and the ID
of the tile it has been found in (see Fig. 3.4 for the numeration of tile IDs).

We look for “candidates” in every tile of a given mosaic in the following
way. The tile picture is sequentially scanned (bottom→up / left→right) for
finding a pixel belonging to one of N color classes. Whenever a pixel is
analyzed in the whole landmark selection stage, it is marked as “visited” so
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that it will not be examined anymore. If the current pixel belongs to one
of N color classes, for instance c, a region growing starting from this pixel
is performed. This operation aims to find an 8-connected region of pixels
of the same color class c. In this way, we try to isolate a whole landmark.
At the end of the region growing, we obtain a pixel “blob” characterized by
the color class c, the number of pixels m it is made of, and the coordinates
of its “centroid”, which are obtained by averaging the coordinates of all
the composing pixels. If m ≥ k, then the current blob is considered as a
candidate for the landmark c, and it is added to the occurrences of color c
in list l.

Once the current region growing finishes, the sequential “scanning” starts
again from the pixel which is next to the previous reached pixel, and it stops
at the first non-visited pixel belonging to one the N color classes. At this
point another region growing is executed.

The whole procedure finishes when all the pixels of all the tiles has been
analyzed.

6.3.2 Landmark matching

In this subsection, we discuss how to find the matching between two candi-
dates of the same landmark c that have been found, respectively, in mosaic
o and r. Actually, we need two matchings, since the relative pose estimation
needs information about two different landmarks. In the following, we ex-
plain the procedure that allows to find these two matchings, given two lists
of candidates, lo and lr (see previous subsection).

The best situation happens when there are at least two landmarks that
are both present in the two lists with only one candidate, i.e., there exist
two univocal matchings. In that case, we take the pixel coordinates of
two corresponding centroids, along with their tile IDs, and we use these
information as parameters for relative pose estimation.

Unfortunately, the univocal matching is not the only type of matching
that occurs. In fact, due to false positives, it could happen to have two or
more candidates of a certain landmark in lo and one or more candidates
of the same landmark in lr, or viceversa. We refer to this case as multiple
matching.

When there is at most one matching between the lists, i.e., there is at
most one landmark common to both the mosaics, we cannot infer the robot
relative pose through triangulation, thus the relative pose estimation is not
invoked. In this case, we decide to estimate the ego-motion using the current
velocities provided by the robot, even if these constitute inaccurate odometric
information (see Subsec. 3.2.2).

Instead, when there are at least two matchings and the univocal ones
are at most one, we must deal with one ore more multiple matchings. In
the following we explain how choosing among the possible combinations of
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candidate correspondences, related to a multiple matching, making use of
the velocities provided by the robot.

Suppose we have, for landmark L1 of color class c, n and m candi-
date centroids, pCo

i and qCr
j with i ∈ [1..n], j ∈ [1..m], respectively in list

lo and lr. The back superscripts p and q, indicate that C o
i and Cr

j have
been found, respectively, in tile p of mosaic o, and in tile q of mosaic r.
Among the possible pairs of corresponding centroids, (C o

i , Cr
j ), we choose

the pair, (pCo
i
,q Cr

j
), associated with the closest distance between, C o

i and

Cr
j . That is, we choose the corresponding candidates whose centroids, when

“anti-projected” on the ground through Eq. 4.24, have the closest distance.
In fact, the distance, measured on the ground, of two corresponding land-
mark points should be ideally zero, but, due to the impossibility of selecting
exactly the same features on both the mosaics, inaccuracies of the calibra-
tion matrix, and defective knowledge about the transform between {bo} and
{br} (see after for further details), such distance is never null. Note that
the anti-transform F−1 brings Co

i and Cr
j to vectors lying on the ground

and expressed, respectively, in {bo} and {br}. In order to compute their
distance, we need to express them w.r.t. the same frame and we choose
{bo}. This means that we need to estimate the change in translation and
rotation between {bo} and {br}, i.e., the robot egomotion. For this pur-
pose, we employ the odometry provided by the robot. In fact, integrating
the linear and rotational velocities provided by the robot during the time
interval ∆ = tr − to, we can easily build the homogeneous matrix, Ao

r, that
allows to express the anti-transform of qCr

j , F−1
Kq

(Cr
j ) (see Subsec. 6.1 for

the notation), into frame {bo}:
(

F−1
Kq

(Cr
j )

){bo}
= Ao

rF−1
Kq

(Cr
j ).

Finally, the centroids to be chosen, pCo
i

and qCr
j
, are such that

∀i ∈ [1..n] ∀j ∈ [1..m]

‖
(

F−1
Kq

(Cr
j
)
){bo} −F−1

Kp
(Co

i
)‖ ≤ ‖

(

F−1
Kq

(Cr
j )

){bo} −F−1
Kp

(Co
i )‖.

Now that we have found the “best” corresponding centroids for L1, we
must repeat this procedure for L2 only if it is characterized by a multiple
matching as well. Finally, we are able to invoke the relative pose estimation
procedure in order to try to achieve a better egomotion estimation than the
one employed for determining Co

i
and Cr

j
.



Chapter 7

Experiments

In this chapter, after a brief explanation of the common experimental set-
up, we test in a systematic way three modules of our system: calibration
matrix, obstacle detection and visual self-localization. For each of them, we
report the experimental set-up, the performance indexes used for evaluating
the experiment, a statistic of the collected results and a brief data analysis.

At the end of the chapter we illustrate a run of the robot in a simple
unknown environment, employing the overall framework we developed for
the whole task of obstacle-free navigation.

7.1 Common experimental set-up

All the experiments described in this chapter were performed using a Sony’s
AIBO ERS-210A. This is a 4 legged robot, with 3 degrees of freedom for
each leg and 3 degrees of freedom for the head (pan, tilt and roll). It is
equipped with a CMOS sensor camera, installed in its head, with a maximum
resolution of 176 × 144 pixels and a field of view of approximately 57.6◦

horizontally and 47.8◦ vertically. Note that these are the fields of view of
each tile composing a mosaic image.

The experimental location was a room with only artificial illumination
consisting in both neon and halogen lamps placed on the ceiling.

We placed the obstacles and made the robot move on a synthetic carpet
which is usually employed in RoboCup Soccer. This carpet allows the robot
to walk with a low slippery factor. Moreover, it has a uniform color.

7.2 Calibration matrix

The first component we want to test in this chapter is the calibration matrix.
Its correctness is important to be evaluated, since we want to validate the
procedure through which this matrix has been obtained. Moreover, the

101
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calibration matrix accuracy affects other relevant vision-based tasks like
obstacle range estimation and self-localization.

In particular, with this experiment, we want to test F−1, i.e., the inverse
transform, built starting from the calibration matrix, that maps pixels below
the horizon line in the mosaic image to the corresponding ground points.

7.2.1 Experimental set-up

We placed in front of the dog a set of objects at a constant distance d from
the origin of the robot framework, i.e., {b}, and spaced of α degrees, such
that to cover a semicircumference. The considered values for d were 13
cm, 30 cm, 60 cm, 100 cm, 160 cm, 230 cm, and the obstacles were spaced
of 5◦ for the first two ranges and every 10◦ for the others, see Fig. 7.1.
Objects were then selected by clicking via mouse the related pixels in the
mosaic image, and the results obtained by applying F−1 to those pixels were
compared with the real object ground locations . The choice of using less
spaced objects, i.e., a lower number of objects, at higher distances, is due to
the fact that far objects that are too close each other result in corresponding
groups of pixels that are almost indistinguishable, thus making inaccurate
the mouse selection. The experiment was carried out using a set of about
150 measures.

7.2.2 Performance indexes

In order to evaluate the accuracy of the computed object positions, we use
two performance indexes: the distance error and the error on the angle,
w.r.t. the robot framework. The first is expressed as a percentage error, the
second one as an absolute error in degrees.

7.2.3 Results

Since the calibration matrix is different for each tile of the mosaic, we
grouped the collected data by the tile in which the pixels were selected.
Note that it is not possible to evaluate all the ranges in each tile. For in-
stance, objects 30 cm far are not visible in tile 1 and 3, and, in order to test
the calibration matrix of tile 5, we introduced a specific obstacle set at 13
cm, which is visible only in that tile. See Figure 3.4 for the tile numeration.

In the following table, a statistic of the obtained results is reported,
indicating for each performance index, mean and standard deviation of the
signed values, mean(st.dev.), and mean of the absolute values, abs mean. We
report also the mean of the absolute values, grouped by range (see column
“mean”).
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tile 1 tile 2 tile 3 tile 4 tile 5 tile 6 mean

13
cm

dist mean (st.dv) -7.18 (1.98)
dist abs mean 7.18 7.18
angle mean (st.dv) 1.07 (2.79)
angle abs mean 2.53 2.53

30
cm

dist mean (st.dv) 7.41 (1.47) -5.15 (2.29) 11.21 (5.00)
dist abs mean 7.41 5.15 11.21 7.96
angle mean (st.dv) -1.88 (1.61) 5.91 (2.11) -4.44 (2.05)
angle abs mean 2.1 5.91 4.44 4.28

60
cm

dist mean (st.dv) 14.17 (8.29) 8.33 (2.48) 5.21 (6.81) -15.00 (6.06) 12.22 (4.16)
dist abs mean 14.50 8.33 2.88 15.00 12.22 11.32
angle mean (st.dv) -1.80 (3.94) 1.60 (2.72) 1.13 (4.09) 1.00 (2.76) -4.98 (3.50)
angle abs mean 3.40 2.00 2.88 1.67 4.98 3.06

10
0

cm

dist mean (st.dv) 5.60 (8.44) -0.2 (1.30) 6.00 (2.45) -24.75 (2.63) 7.71 (4.49)
dist abs mean 7.2 1.00 6.00 24.75 7.71 8.93
angle mean (st.dv) -0.2 (1.48) 1.40 (3.05) 3.00 (1.22) 2.75 (1.71) 1.68 (1.73)
angle abs mean 1.00 2.60 3.00 2.75 2.04 2.60

16
0

cm

dist mean (st.dv) 0.56 (13.24) -4.15 (10.27) 16.25 (7.49)
dist abs mean 10.94 9.26 16.25 11.11
angle mean (st.dv) 2.60 (1.71) 1.73 (2.69) 3.00 (1.00)
angle abs mean 2.6 2.45 3.00 2.74

23
0

cm

dist mean (st.dv) 3.84 (27.30) 1.39 (12.09) 22.70 (11.18)
dist abs mean 22.24 8.69 23.21 18.85
angle mean (st.dv) 2.17 (2.49) 0.00 (1.41) 1.28 (1.15)
angle abs mean 2.83 1.20 1.33 2.06
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(a) Top view of the experimental set-up. The robot is in
the center of a semi-circumference with radius of 30 cm,
and made of small white objects spaced every 10◦. Under
the dog there is a paper over which a goniometer has been
printed. This is used to set the objects.

(b) Robot view of the experimental set-up. This is what is
visible from the mosaic image shot by the robot. The white
objects are purposely small in order to make their mouse
selection almost univocal. Note, in the middle-low tile, the
shadow of the robot head and ears.

Figure 7.1: Two views of the experimental set-up used for testing the cali-
bration matrix.
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7.2.4 Data analysis

Analyzing the collected data, we can see that, in the most of the cases,
the mean value of the distance error is not null. It reveals a systematic
error due, for instance, to inaccurate pan/tilt rotation of the robot camera.
This imprecision could be particularly evident in tile 4 since in this case the
distances are always under-estimated.

Another cause may be imputed to the measuring procedure itself, e.g.,
a non-exact positioning of the robot in the center of the semicircumference.
In fact, in the case of 13 cm range, an error of 1 cm leads to a systematic
distance error of 8%.

We can notice also that for 160 and 230 cm ranges, the standard devia-
tion is considerably higher than for shorter ranges, owing to a more sensitive
dependence on the pixel selection and to the head-rotation error.

Figure 7.2(a) shows the abs mean of all the samples with respect to the
range. It is evident a growing trend of the error as the range increases. The
error peak in 60 cm could be explained by a not enough large set of samples.

On the contrary, the angle error does not seem to have a strong depen-
dence on the object distance. Figure 7.2(b) shows the angular abs mean
with respect to the range. It has not an evident trend, but it is bounded
under 5◦. Looking instead at the signed mean, only tile 6 and 4 reveal
high systematic errors, that could be due, again, to the imprecise camera
rotation.

7.3 Obstacle detection

The obstacle detection module reveals the presence of obstacles placed on the
ground around the robot, and estimates their distance from the robot frame-
work. We have implemented two algorithms to realize it, see respectively
Sec. 4.3 and Sec. 4.4. The former, algorithm 1, detects the first obstacle
point along a scan line, whereas the latter, algorithm 2, detects the closest
one within an angle. In this section we test both and we compare them by
finding out the main differences in the results.

7.3.1 Experimental set-up

In these experiments, we employed two different environmental scenarios.
Each of them was made of the robot surrounded by a set of obstacles with
different shapes and dimensions, e.g., some small balls with 5-10 cm diameter
and some bars 60-100 cm long, see Figure 7.3.

Concerning the tuning of the segmentation stage, we employed RATIO =
400, see Subsec. 4.1.5.

In order to evaluate the obstacle detection, we used different combina-
tions of two parameters. The first one is the type of scenario illumination:
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(a) Absolute percentage error of the distance as
function of the range.

(b) Absolute angular error as function of the
range.

Figure 7.2: Error functions of the distance and the angle of an object.
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Figure 7.3: A scenario with balls and bars in front of the dog.

neon or halogen lamps. The second one determines manual or automatic
segmentation (see Sec. 4.1).

7.3.2 Performance indexes

Our obstacle detection tries to find the closest obstacle either along a scan
line or within an angle, depending on the considered algorithm. For each
scan line or angle there exist four different cases:

• an obstacle is found and it corresponds to a real obstacle (True Posi-
tive, TP);

• no obstacles are found and there are not any obstacles, as well, in the
real scenario (True Negative, TN );

• an obstacle is found, but it does not exist in the scenario (False Posi-
tive, FP);

• no obstacles are found, but a real obstacle exists (False Negative, FN).

The performance indexes used to evaluate the false detections are the num-
ber of FP and FN.

Note that in this section we do not want to test the accuracy of the
detected obstacle distances because these strongly depend on the calibration
matrix, already evaluated in Sec. 7.2.

An important remark deals with distinguishing a FP from a TP related
to a high error on the distance. This is not always a trivial task and such
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situation occurs to coincide with an incorrect segmentation. We adopted
the following criterion to discriminate between FP and TP: if the segmented
image shows isolated groups of misclassified obstacle pixels that are closer to
the projected {b} origin than all the other obstacle pixels, and are detected
by either a projected scan line or a projected angle, then such an obstacle is
considered as FP; otherwise, if the segmentation enlarges or shrinks a true
obstacle, this is classified as TP, although the distance error is high due to
inaccurate segmentation.

Moreover, owing to the inaccuracy of the calibration matrix for high
ranges, see Sec. 7.2, we do not consider obstacles with a real distance higher
than 160 cm. Such a “threshold” is taken in account, within the sensor
model, in the visibility function (see Subsec. 5.1.1).

7.3.3 Results

The table below summarizes the results obtained in this experiment. For
each scenario, it is indicated the type of illumination, neon or halogen, and
the type of segmentation, automatic or a manual, for both the algorithm
adopted.

FP and FN express the number of scan lines or angles that detect a False
Positive or a False Negative. Note that the sum of FP and FN has 36 as
upper-bound, i.e., the total number of scan lines or angles analyzed for each
mosaic.

algorithm 1 algorithm 2

Scenario Parameters FP FN FP FN

1

Neon & manual 4 6 5 3
Halogen & manual 4 6 5 3
Neon & automatic 4 6 7 1
Halogen & automatic 4 6 4 2

2

Neon & manual 1 7 1 5
Halogen & manual 1 8 2 6
Neon & automatic 4 3 3 4
Halogen & automatic 4 4 3 2

7.3.4 Data Analysis

The previous table shows that the best results are reached when a manual
segmentation is performed. In fact, this usually allows to reduce the FP
number. The automatic segmentation, instead, seems to reduce the number
of FN, but this is not a real improvement of performance, because there
is a sort of transformation of FN in FP. The automatic segmentation, in
fact, produces many noisy obstacle pixels at short distances from the robot.
Thus, scan lines or angles related to a FN in the manual segmentation, might
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detect one of these noisy pixels and give arise to a FP in the automatic
segmentation.

A comparison between the two algorithms shows that algorithm 1 detects
more FN and less FP than algorithm 2. This is explainable considering two
main reasons:

• provided that algorithm 1 samples the space only every 5 degrees, it
is less sensitive to the segmentation noise described above;

• algorithm 2 is less sensitive to the calibration matrix inaccuracy that
causes the detection of FN. See Fig. 7.4 for a graphical example.

Figure 7.4: This figure illustrates why algorithm 2 is less sensitive to detec-
tion of FN than algorithm 1. It is depicted a real scan line on the ground
(thick dash-dotted line) and the related real angle considered by algorithm
2 (the angle sides are the thick continuous lines). The thin dash-dotted line
and the thin continuous lines represent respectively the scan line and the
angle sides as they are “perceived”, on the average, by the robot, because
of the calibration matrix inaccuracy. Note that the figure refers to the case
of a positive systematic angle error like one of those reported in the table of
Subsec. 7.2.3. As you can see, an obstacle placed on the real scan line and
within the related angle, might not be detected by algorithm 1, giving rise
to a FN. Whereas, algorithm 2 can correctly considers the obstacle as a TP.

The obtained results show a general high number of FN with respect to
the FP. This is also because of the RATIO value used. Setting RATIO
to a lower value, the number of FP increases, whereas the number of FN
decreases. This is usually a preferred situation, because, in order to avoid
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obstacles, a FN is a more relevant error than a FP, i.e., a longer path gener-
ated to avoid a “fictitious” obstacle is preferred to a path that leads against
an “unseen” obstacle.

7.4 Visual self-localization

In this section we want to evaluate the precision of the visual self-localization
stage that we have implemented according to the technique discussed in
chapter 6. During the execution of the overall navigation system, the self-
localization exploits the integration of the velocity information supplied by
the robot with the visual information derived from the landmark recognition.
In this experiment, however, we employ only the “pure” visual component of
the self-localization, in order to achieve an intrinsic evaluation of this part.
This means that we consider only the cases in which the other component
of self-localization, the open-loop odometry, is not needed for estimating the
current robot position (see Ch. 6). Anyway, an example of self-localization
with both the components will be given in Section 7.5, where we will show
a run of the whole navigation task.

7.4.1 Experimental set-up

Our visual self-localization requires the presence in the environment of a set
of landmarks with different known colors. We used four flat papers with
sides of about 15 cm, lying on the ground. The employed colors, pink, blue,
yellow and green, are uniform and easily distinguishable. This choice was
made to avoid misdetection of landmarks.

The selection of corresponding landmarks is performed in two modali-
ties: manually clicking via mouse directly on the mosaic images, or in an
automatic way.

The robot was moved from the starting position to the goal manually
and we verified the estimated robot position provided by the visual self-
localization procedure. This experiment was repeated 30 times using always
different displacements and robot headings, for covering many possible con-
figurations.

7.4.2 Performance indexes

The performance indexes used in this section are:

• percentage error on the length of the displacement;

• absolute error on the angle of the displacement direction;

• absolute error on the angle of the robot heading.
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7.4.3 Results

The following is a statistic of the experimental results. Dist, Angle and head-
ing are the mean values of the previously described performance indexes.

Dist Angle Heading

manual 15.44 7.53 9.99

automatic 20.30 13.67 16.37

7.4.4 Data analysis

The obtained results show that the automatic self-localization leads to a
considerable worsening of the performance, in particular the heading angle
reveals an increase of the error of 6.4◦. This worsening is due to the auto-
matic determination of landmark centroids. In fact, correspondences among
centroid pixels are found in order to individuate the same landmark in dif-
ferent mosaic images, but usually such pixels do not represent exactly the
same real point of the landmark since this is a quite large object.

7.5 Obstacle avoidance

In this section we want to show the functioning of the overall navigation
system in an environment containing obstacles and landmarks with a-priori
known color.

The robot, placed in a starting point, takes a mosaic picture of the
environment in front of it and, using the information of obstacle distances
obtained through the visual sensor (implemented, in this experiment, with
the visual sonar algorithm), builds a map with cells of 10 cm size. Once
the map is displayed in the host console, we select the goal cell that is
supposed to be reached. A path connecting the start to the goal cell is
planned and then executed, exploiting, at each path waypoint, the robot
visual self-localization.

In this experiment we used a different set of landmarks from those de-
scribed in Sec. 7.4, because, we needed more visible landmarks to be observed
by the robot throughout its navigation. Therefore, we employed a set of four
cylinders, see Figure 7.5(b), and the related centroids were computed such
that they were always on the ground.

Figure 7.5(a) illustrates the run of the robot. The circles represents
the four landmarks used. They are considered both as landmarks and as
obstacles to be avoided.

The starting point is marked with a cross and the final one with a small
circle. The planned path is drawn with a dashed line and the actual executed
one with a continuous line.

The final reached position is not exactly the goal point, but it is quite
close to it, about 30 cm far. This difference is due to the cumulative error
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of the estimate robot position that grows during the whole execution of the
path. In fact, the visual self-localization computed at each waypoint, is a
relative pose estimation that, unavoidably, brings the system to accumulate
errors at each step. This error accumulation, sometimes, might lead the
path execution to fail in avoiding obstacles, especially if this is made of a
large number of way-points.
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30 cm

(a) The scenario is made of four landmarks, the big circles.
The robot, initially at the cross point, is expected to reach
the goal, the empty small circle, following the obstacle-
free planned path, the dashed line. The continuous line
represents the real executed path. The goal and the real
final position, the filled small circle, are 30 cm distant
and this is mainly due to the error of the self-localization,
accumulated during the execution.

(b) A picture of the scenario, took when the AIBO reached
the final position.

Figure 7.5: A run of the AIBO robot in a scenario with four landmarks,
used for the visual self-localization and considered also as obstacles to be
avoided.
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Chapter 8

Conclusions

8.1 Summary

In this thesis we have described the problems and the related employed
techniques underlying the implementation of a semi-autonomous navigation
system in unstructured environments, using a Sony’s AIBO robot.

The main original contributions of this thesis are:

1. the overall framework;

2. visual sonar algorithm extended to mosaic images;

3. a new method for obstacle range estimation using mosaic images;

4. a new method for relative pose estimation based on mosaic images.

Provided the breadth of the problem addressed in this thesis, we have
coped with it sometimes exploiting existing solutions, as in the case of map
building and planning [21, 25], other times extending existing ideas to our
needs, as in the case of “visual sonar” [16], and sometimes designing new
approaches, as in the case of the second method of obstacle detection (see
Sec. 4.4) and the visual self-localization procedure (see Sec. 6.1). Apart
from the previously mentioned contributions, a relevant part of this work
has concerned the actual integration of the several components needed for
the task of semi-autonomous navigation in the particular distributed robotic
platform employed by us. These components range from those belonging to
more abstract layers, like planning an obstacle-free path, those belonging to
the perception level, like estimation of obstacle ranges, to those dealing with
the “physical” interface between robot and environment, like execution of a
path.

For what concerns the research issues, this work has focused mainly on
some possible solutions to the AIBO’s intrinsic weaknesses concerning lack
of effective sensors for obstacle detection and range estimation, and for self-
localization.

115
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8.2 Critical evaluation

The original goal of this thesis was to develop a system for semi-autonomous
navigation of an AIBO in unknown environments. Emphasis was put on
the exploitation of the monocular vision that is the major mean AIBO has
to acquire information from the environment, even though its camera pro-
vides images with a limited field of view. In particular, monocular vision
was intended mainly to cope with detecting obstacles and with robot self-
localization.

We have faced the problem related to the obstacle perception, designing
two different ways for inferring obstacle distances. These methods are based
on mosaic images, i.e., sets of images taken by the robot camera from dif-
ferent orientations, which supply a wider field of view than a simple image.
Experimental evidence has shown that these methods provide acceptable
results, at least comparable with those obtained in the research domain of
the legged RoboCup, which also employs Sony’s AIBOs.

Concerning the tough problem related to the self-localization of a legged
robot, we have proposed a visual approach employing mosaic images as well,
which is alternative to the only use of the defective open-loop odometry (See
Subsec. 3.2.2).

Making use of the above solutions, we have developed a stand-alone sys-
tem for the semi-autonomous navigation of the robot. In fact, throughout
the environment exploration, the robot builds a map of the detected obsta-
cles and this allows the operator to click on such map to provide the robot
with a goal environment location to be reached. Then, the robot tries to
reach autonomously that location by moving on a flat floor of unknown color
and taking care of avoiding obstacles.

There are also some limitations to be overcome. In fact, considering the
self-localization, the results are not completely satisfying, especially con-
cerning the robot heading error resulting in the automatic version (see Sub-
sec. 7.4.3). Instead, regarding the whole semi-autonomous navigation, we
have obtained a system still quite far from its actual applicability in real
unknown environments, since we have assumed static obstacles during the
execution of a path, and the presence of artificial landmarks. Moreover, the
error sensitivity of the visual self-localization method sometimes affects the
effectiveness of the execution of an obstacle-free path. However, we have
provided a modular framework where future enhancements can be applied.

8.3 Future work

Concerning the obstacle range detection, improvements might be achieved
essentially in two directions:

• Calibration matrix. Other ways to calibrate the robot camera could
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be tried. In fact, we have adopted a “direct” method that builds the
matrix starting from all the needed intrinsic and extrinsic parameters,
but there exists other “indirect” methods to get such matrix that are
based on sample camera images. These methods could model some
phenomena like lens distorsions and systematic positioning error of
the camera that we have not taken in account.

• Segmentation. This is a difficult operation to be performed in unknown
environments since it is hard to distinguish general obstacles from the
free ground, in every light condition. We have employed a thresholding
technique, but other solutions could be tried like edge detection-based
segmentation or clustering methods.

Regarding the visual self-localization, the first important enhancement
to be done is avoiding the artificial landmarks. This could be reached, for in-
stance, employing feature detection algorithms based on natural landmarks,
e.g., those relying on edge detection. Moreover, a model of the uncertainty
related to range and bearing landmark measurement could be introduced.
For instance, knowledge of the Geometric Dilution Of Precision (GDOP)
(see [7] for more details) can be used by the robot to select which land-
marks are to be used if multiple landmark choices are available. However,
in practical situations a robotic system may encounter difficulties in uniquely
identifying landmarks, or the position estimation may be unstable owing to
landmark geometry, as in the case of the flat, relatively large landmarks
we have employed in Sec. 7.4. One approach to dealing with intermittently
reliable landmark information could be to combine, in a tighter way than we
have done in our work, landmark-based position information with position
information from the open-loop odometry. This fusion of information from
two sources could be accomplished using, for instance, a Kalman filter.

In order to provide a more robust navigation in presence of both static
and dynamic obstacles, a behavior-based approach, exploiting the AIBO’s
infrared sensor, could be integrated with the deliberative architecture we
have employed. In fact, the infrared sensor can detect obstacle within a
range of approximately one meter, even thought it does not produce accurate
range estimation.
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